Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1167, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326434

RESUMO

The Hume-Rothery rules governing solid-state miscibility limit the compositional space for new inorganic material discovery. Here, we report a non-equilibrium, one-step, and scalable flame synthesis method to overcome thermodynamic limits and incorporate immiscible elements into single phase ceramic nanoshells. Starting from prototype examples including (NiMg)O, (NiAl)Ox, and (NiZr)Ox, we then extend this method to a broad range of Ni-containing ceramic solid solutions, and finally to general binary combinations of elements. Furthermore, we report an "encapsulated exsolution" phenomenon observed upon reducing the metastable porous (Ni0.07Al0.93)Ox to create ultra-stable Ni nanoparticles embedded within the walls of porous Al2O3 nanoshells. This nanoconfined structure demonstrated high sintering resistance during 640 h of catalysis of CO2 reforming of methane, maintaining constant 96% CH4 and CO2 conversion at 800 °C and dramatically outperforming conventional catalysts. Our findings could greatly expand opportunities to develop novel inorganic energy, structural, and functional materials.

2.
R Soc Open Sci ; 11(2): 231331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384777

RESUMO

Inkjet printing is a more sustainable and scalable fabrication method than spin coating for producing perovskite solar cells (PSCs). Although spin-coated SnO2 has been intensively studied as an effective electron transport layer (ETL) for PSCs, inkjet-printed SnO2 ETLs have not been widely reported. Here, we fabricated inkjet-printed, solution-processed SnOx ETLs for planar PSCs. A champion efficiency of 17.55% was achieved for the cell using a low-temperature processed SnOx ETL. The low-temperature SnOx exhibited an amorphous structure and outperformed high-temperature crystalline SnO2. The improved performance was attributed to enhanced charge extraction and transport and suppressed charge recombination at ETL/perovskite interfaces, which originated from enhanced electrical and optical properties of SnOx, improved perovskite film quality, and well-matched energy level alignment between the SnOx ETL and the perovskite layer. Furthermore, SnOx was doped with Cu. Cu doping increased surface oxygen defects and upshifted energy levels of SnOx, leading to reduced device performance. A tunable hysteresis was observed for PSCs with Cu-doped SnOx ETLs, decreasing at first and turning into inverted hysteresis afterwards with increasing Cu doping level. This tunable hysteresis was related to the interplay between charge/ion accumulation and recombination at ETL/perovskite interfaces in the case of electron extraction barriers.

3.
Nano Lett ; 24(3): 1009-1014, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38214894

RESUMO

In the field of physics and materials science, the discovery of the layer-polarized anomalous Hall effect (LP-AHE) stands as a crucial development. The current research paradigm is rooted in topological or inversion-asymmetric valleytronic systems, making such a phenomenon rather rare. In this work, a universal design principle for achieving the LP-AHE from inversion-symmetric single-layer lattices is proposed. Through tight-binding model analysis, we demonstrate that by stacking into antiferromagnetic van der Waals bilayer lattices, the coupling physics between PT symmetry and vertical external bias can be realized. This coupling reveals the previously neutralized layer-locked Berry curvature, compelling the carriers to move in a specific direction within a given layer, thereby realizing the LP-AHE. Intriguingly, the chirality of the LP-AHE can be effectively switched by modulating the direction of vertical external bias. First-principles calculations validate this mechanism in bilayer T-FeCl2 and MnPSe3. Our results pave the way for new explorations of the LP-AHE.

4.
Angew Chem Int Ed Engl ; 63(2): e202314181, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009453

RESUMO

Glassy Na-ion solid-state electrolytes (GNSSEs) are an important group of amorphous SSEs. However, the insufficient ionic conductivity of state-of-the-art GNSSEs at room temperature lessens their promise in the development of all-solid-state Na-ion batteries (ASSNIBs) with high energy density and improved safety. Here we report the discovery of a new sodium superionic glass, 0.5Na2 O2 -TaCl5 (NTOC), based on dual-anion sublattice of oxychlorides. The unique local structures with abundant bridging and non-bridging oxygen atoms contributes to a highly disordered Na-ion distribution as well as low Na+ migration barrier within NTOC, enabling an ultrahigh ionic conductivity of 4.62 mS cm-1 at 25 °C (more than 20 times higher than those of previously reported GNSSEs). Moreover, the excellent formability of glassy NTOC electrolyte and its high electrochemical oxidative stability ensure a favourable electrolyte-electrode interface, contributing to superior cycling stability of ASSNIBs for over 500 cycles at room temperature. The discovery of glassy NTOC electrolyte would reignite research enthusiasm in superionic glassy SSEs based on multi-anion chemistry.

5.
ACS Nano ; 17(24): 25357-25367, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078868

RESUMO

Electrochemical-oxidation-driven reconstruction has emerged as an efficient approach for developing advanced materials, but the reconstructed microstructure still faces challenges including inferior conductivity, unsatisfying intrinsic activity, and active-species dissolution. Herein, we present hybrid reconstruction chemistry that synergistically couples electrochemical oxidation with electrochemical polymerization (EOEP) to overcome these constraints. During the EOEP process, the metal hydroxides undergo rapid reconstruction and dynamically couple with polypyrrole (PPy), resulting in an interface-enriched microenvironment. We observe that the interaction between PPy and the reconstructed metal center (i.e., Mn > Ni, Co) is strongly correlated. Theoretical calculation results demonstrate that the strong interaction between Mn sites and PPy breaks the intrinsic limitation of MnO2, rendering MnO2 with a metallic property for fast charge transfer and enhancing the ion-adsorption dynamics. Operando Raman measurement confirms the promise of EOEP-treated Mn(OH)2 (E-MO/PPy) to stably work under a 1.2 V potential window. The tailored E-MO/PPy exhibits a high capacitance of 296 F g-1 at a large current density of 100 A g-1. Our strategy presents breakthroughs in upgrading the electrochemical reconstruction technique, which enables both activity and kinetics engineering of electrode materials for better performance in energy-related fields.

6.
ACS Appl Mater Interfaces ; 15(41): 48072-48084, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37805993

RESUMO

Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode-electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI-, [Mg(TFSI)]+, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg(TFSI):G2]+ is the most reactive species. The cleavage of C-S bonds in TFSI- to form CF3- is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C-O bonds of G2 to yield CH3+ or OCH3- species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI-, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte-MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgFx, carbonates) and the higher amount of MgFx with [Mg(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation.

7.
Nat Mater ; 22(11): 1370-1379, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798516

RESUMO

Li[LixNiyMnzCo1-x-y-z]O2 (lithium-rich NMCs) are benchmark cathode materials receiving considerable attention due to the abnormally high capacities resulting from their anionic redox chemistry. Although their anionic redox mechanisms have been much investigated, the roles of cationic redox processes remain underexplored, hindering further performance improvement. Here we decoupled the effects of nickel and cobalt in lithium-rich NMCs via a comprehensive study of two typical compounds, Li1.2Ni0.2Mn0.6O2 and Li1.2Co0.4Mn0.4O2. We discovered that both Ni3+/4+ and Co4+, generated during cationic redox processes, are actually intermediate species for triggering oxygen redox through a ligand-to-metal charge-transfer process. However, cobalt is better than nickel in mediating the kinetics of ligand-to-metal charge transfer by favouring more transition metal migration, leading to less cationic redox but more oxygen redox, more O2 release, poorer cycling performance and more severe voltage decay. Our work highlights a compositional optimization pathway for lithium-rich NMCs by deviating from using cobalt to using nickel, providing valuable guidelines for future high-capacity cathode design.

8.
Science ; 381(6660): 857-861, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616342

RESUMO

Methane pyrolysis (MP) is a potential technology for CO2-free hydrogen production that generates only solid carbon by-products. However, developing a highly efficient catalyst for stable methane pyrolysis at a moderate temperature has been challenging. We present a new and highly efficient catalyst created by modifying a Ni-Bi liquid alloy with the addition of Mo to produce a ternary NiMo-Bi liquid alloy catalyst (LAC). This catalyst exhibited a considerably low activation energy of 81.2 kilojoules per mole, which enabled MP at temperatures between 450 and 800 Celsius and a hydrogen generation efficiency of 4.05 ml per gram of nickel per minute. At 800 Celsius, the catalyst exhibited 100% H2 selectivity and 120 hours of stability.

9.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448087

RESUMO

Road scene understanding is crucial to the safe driving of autonomous vehicles. Comprehensive road scene understanding requires a visual perception system to deal with a large number of tasks at the same time, which needs a perception model with a small size, fast speed, and high accuracy. As multi-task learning has evident advantages in performance and computational resources, in this paper, a multi-task model YOLO-Object, Drivable Area, and Lane Line Detection (YOLO-ODL) based on hard parameter sharing is proposed to realize joint and efficient detection of traffic objects, drivable areas, and lane lines. In order to balance tasks of YOLO-ODL, a weight balancing strategy is introduced so that the weight parameters of the model can be automatically adjusted during training, and a Mosaic migration optimization scheme is adopted to improve the evaluation indicators of the model. Our YOLO-ODL model performs well on the challenging BDD100K dataset, achieving the state of the art in terms of accuracy and computational efficiency.


Assuntos
Veículos Autônomos , Aprendizagem , Registros , Software
10.
Phys Chem Chem Phys ; 25(19): 13683-13689, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158022

RESUMO

In this work, we constructed theoretical models by embedding Fe-TCPP and Fe-(mIM)n (n = 2,3,4) active sites into hole-graphene, and the structural stability was evaluated using molecular dynamics simulations. Based on the theoretical models, we systematically studied the oxygen reduction reaction (ORR) mechanism and the effect of spatial confinement and ligands with DFT calculations. The analysis of the ORR reaction pathway shows that Fe-TCPP and Fe-(mIM)4 have good catalytic activity. Subsequently, the confinement effect (5-14 Å) was introduced to investigate its influence on the catalytic activity. The Fe-TCPP and Fe-(mIM)4 active sites have the lowest overpotential at an axial space of 8 Å and 9 Å, respectively. We select four ligands (bpy, pya, CH3, and bIm) to explore their effect on the catalytic activity of the Fe-TCPP active site. With the modification of bpy, pya, and bIm_N (Fe-N4 sites become Fe-N5 active sites), the overpotential decreases by 26-31%. In the present work, the best catalytic system is Fe-TCPP_pya, which is on the top of the volcano plot.

11.
Environ Pollut ; 330: 121727, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137406

RESUMO

Re-suspended road dust RRD as RRD2.5 and RRD10 can even more easily enter the atmospheric environment, showing a kind of significant potential to influence atmospheric environment. A campaign of sampling RRD samples at 53 sites and aerosol samples at a representative urban site in Beijing in October 2014, January, April and July 2015 was accomplished, and combined with RRD in 2003, and 2016-2018 periods to investigate the seasonal variations of chemical components in RRD2.5 and RRD10, long-term evolutions of RRD characteristics in 2003-2018, and source composition changes of RRD. Meanwhile a technique based on Mg/Al indicator for effectively estimating contributions of RRD to PM was developed. It is found that pollution elements and water-soluble ions in RRD were largely enriched in RRD2.5. The pollution elements presented an obvious seasonal variation in RRD2.5, however showed various seasonal variations in RRD10. These pollution elements in RRD, due to being mainly impacted by both increasing traffic activities and atmospheric pollution control measures, almost display a single-peak change in 2003-2018. The water-soluble ions in RRD2.5 and RRD10 presented various seasonal variations, and displayed an evident increase in 2003-2015. The source composition of RRD in 2003-2015 posed a significant change that traffic activities, crustal soil, secondary pollution species and biomass combustion became significant contributors to RRD. The contributions of RRD2.5/RRD10 to mineral aerosols in PM2.5/PM10 presented a similar seasonal variation. The synergistic effects of meteorological factors and anthropogenic activities in different seasons were significant motive force influencing the contributions of RRD to the mineral aerosols. The pollution elements Cr and Ni in RRD2.5 were the significant contributors to PM2.5, however, Cr, Ni, Cu, Zn, and Pb in RRD10 were the important contributors to PM10. The research will provide a new significant scientific guide for further controlling atmospheric pollution and improving air quality.


Assuntos
Poluentes Atmosféricos , Poeira , Poeira/análise , Pequim , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Estações do Ano , Aerossóis/análise , Íons , Água , Material Particulado/análise , Emissões de Veículos/análise
12.
Adv Mater ; 35(29): e2301414, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058276

RESUMO

Metal anodes are considered the holy grail for next-generation batteries because of their high gravimetric/volumetric specific capacity and low electrochemical potential. However, several unsolved challenges have impeded their practical applications, such as dendrite growth, interfacial side reactions, dead layer formation, and volume change. An electrochemically, chemically, and mechanically stable artificial solid electrolyte interphase is key to addressing the aforementioned issue with metal anodes. This study demonstrates a new concept of organic and inorganic hybrid interfaces for both Li- and Na-metal anodes. Through tailoring the compositions of the hybrid interfaces, a nanoalloy structure to nano-laminated structure is realized. As a result, the nanoalloy interface (1Al2 O3 -1alucone or 2Al2 O3 -2alucone) presents the most stable electrochemical performances for both Li-and Na-metal anodes. The optimized thicknesses required for the nanoalloy interfaces for Li- and Na-metal anodes are different. A cohesive zone model is applied to interpret the underlying mechanism. Furthermore, the influence of the mechanical stabilities of the different interfaces on the electrochemical performances is investigated experimentally and theoretically. This approach provides a fundamental understanding and establishes the bridge between mechanical properties and electrochemical performance for alkali-metal anodes.

13.
Phys Chem Chem Phys ; 25(14): 9859-9867, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945899

RESUMO

Carbon dioxide-assisted coupling of methane offers an approach to chemically upgrade two greenhouse gases and components of natural gas to produce ethylene and syngas. Prior research on this reaction has concentrated efforts on catalyst discovery, which has indicated that composites comprised of both reducible and basic oxides are especially promising. There is a need for detailed characterization of these bifunctional oxide systems to provide a more fundamental understanding of the active sites and their roles in the reaction. We studied the dependence of physical and electronic properties of Ca-modified ZnO materials on Ca content via X-ray photoelectron and absorption spectroscopies, electron microscopy, and infrared spectroscopic temperature-programmed desorption (IR-TPD). It was found that introduction of only 0.6 mol% Ca onto a ZnO surface is necessary to induce significant improvement in the catalytic production of C2 species: C2 selectivity increases from 5% on un-modified ZnO to 58%, at similar conversions. Evidence presented shows that this selectivity increase results from the formation of an interface between the basic CaO and reducible ZnO phases. The basicity of these interface sites correlates directly with catalytic activity over a wide composition range, and this relationship indicates that moderate CO2 adsorption strength is optimal for CH4 coupling. These results demonstrate, for the first time to our knowledge, a volcano-type relationship between CO2-assisted CH4 coupling activity and catalyst surface basicity, which can inform further catalyst development.

14.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991618

RESUMO

Due to the openness of communication network and the complexity of system structures, multi-agent systems are vulnerable to malicious network attacks, which can cause intense instability to these systems. This article provides a survey of state-of-the-art results of network attacks on multi-agent systems. Recent advances on three types of attacks, i.e., those on DoS attacks, spoofing attacks and Byzantine attacks, the three main network attacks, are reviewed. Their attack mechanisms are introduced, and the attack model and the resilient consensus control structure are discussed, respectively, in detail, in terms of the theoretical innovation, the critical limitations and the change of the application. Moreover, some of the existing results along this line are given in a tutorial-like fashion. In the end, some challenges and open issues are indicated to guide future development directions of the resilient consensus of multi-agent system under network attacks.

15.
Adv Mater ; 35(19): e2211603, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36802104

RESUMO

The past decade has witnessed the development of layered-hydroxide-based self-supporting electrodes, but the low active mass ratio impedes its all-around energy-storage applications. Herein, the intrinsic limit of layered hydroxides is broken by engineering F-substituted ß-Ni(OH)2 (Ni-F-OH) plates with a sub-micrometer thickness (over 700 nm), producing a superhigh mass loading of 29.8 mg cm-2 on the carbon substrate. Theoretical calculation and X-ray absorption spectroscopy analysis demonstrate that Ni-F-OH shares the ß-Ni(OH)2 -like structure with slightly tuned lattice parameters. More interestingly, the synergy modulation of NH4 + and F- is found to serve as the key enabler to tailor these sub-micrometer-thickness 2D plates thanks to the modification effects on the (001) plane surface energy and local OH- concentration. Guided by this mechanism, the superstructures of bimetallic hydroxides and their derivatives are further developed, revealing they are a versatile family with great promise. The tailored ultrathick phosphide superstructure achieves a superhigh specific capacity of 7144 mC cm-2 and a superior rate capability (79% at 50 mA cm-2 ). This work highlights a multiscale understanding of how exceptional structure modulation happens in low-dimensional layered materials. The as-built unique methodology and mechanisms will boost the development of advanced materials to better meet future energy demands.

16.
Angew Chem Int Ed Engl ; 62(15): e202218664, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787047

RESUMO

Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2 ), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2 H5 OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat -1 h-1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2 H5 OH conversion pathway.

17.
Rev Sci Instrum ; 94(1): 014714, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725554

RESUMO

Laser pump X-ray Transient Absorption (XTA) spectroscopy offers unique insights into photochemical and photophysical phenomena. X-ray Multiprobe data acquisition (XMP DAQ) is a technique that acquires XTA spectra at thousands of pump-probe time delays in a single measurement, producing highly self-consistent XTA spectral dynamics. In this work, we report two new XTA data acquisition techniques that leverage the high performance of XMP DAQ in combination with High Repetition Rate (HRR) laser excitation: HRR-XMP and Asynchronous X-ray Multiprobe (AXMP). HRR-XMP uses a laser repetition rate up to 200 times higher than previous implementations of XMP DAQ and proportionally increases the data collection efficiency at each time delay. This allows HRR-XMP to acquire more high-quality XTA data in less time. AXMP uses a frequency mismatch between the laser and x-ray pulses to acquire XTA data at a flexibly defined set of pump-probe time delays with a spacing down to a few picoseconds. AXMP introduces a novel pump-probe synchronization concept that acquires data in clusters of time delays. The temporally inhomogeneous distribution of acquired data improves the attainable signal statistics at early times, making the AXMP synchronization concept useful for measuring sub-nanosecond dynamics with photon-starved techniques like XTA. In this paper, we demonstrate HRR-XMP and AXMP by measuring the laser-induced spectral dynamics of dilute aqueous solutions of Fe(CN)6 4- and [FeII(bpy)3]2+ (bpy: 2,2'-bipyridine), respectively.

18.
ACS Appl Mater Interfaces ; 15(5): 7518-7528, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715357

RESUMO

Charge transfer across the electrode-electrolyte interface is a highly complex and convoluted process involving diverse solvated species with varying structures and compositions. Despite recent advances in in situ and operando interfacial analysis, molecular specific reactivity of solvated species is inaccessible due to a lack of precise control over the interfacial constituents and/or an unclear understanding of their spectroscopic fingerprints. However, such molecular-specific understanding is critical to the rational design of energy-efficient solid-electrolyte interphase layers. We have employed ion soft landing, a versatile and highly controlled method, to prepare well-defined interfaces assembled with selected ions, either as solvated species or as bare ions, with distinguishing molecular precision. Equipped with precise control over interfacial composition, we employed in situ multimodal spectroscopic characterization to unravel the molecular specific reactivity of Mg solvated species comprising (i.e., bis(trifluoromethanesulfonyl)imide, TFSI-) anions and solvent molecules (i.e., dimethoxyethane, DME/G1) on a Mg metal surface relevant to multivalent Mg batteries. In situ multimodal spectroscopic characterization revealed higher reactivity of the undercoordinated solvated species [Mg-TFSI-G1]+ compared to the fully coordinated [Mg-TFSI-(G1)2]+ species or even the bare TFSI-. These results were corroborated by the computed reaction pathways and energy barriers for decomposition of the TFSI- within Mg solvated species relative to bare TFSI-. Finally, we evaluated the TFSI reactivity under electrochemical conditions using Mg(TFSI)2-DME-based phase-separated electrolytes representing different solvated constituents. Based on our multimodal study, we report a detailed understanding of TFSI- decomposition processes as part of coordinated solvated species at a Mg-metal anode that will aid the rational design of improved sustainable electrochemical energy technologies.

19.
Proc Natl Acad Sci U S A ; 120(1): e2206850120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577066

RESUMO

Atomically dispersed catalysts have been shown highly active for preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). However, their stability has been less than ideal. We show here that the introduction of a structural component to minimize diffusion of the active metal center can greatly improve the stability without compromising the activity. Using an Ir dinuclear heterogeneous catalyst (DHC) as a study platform, we identify two types of oxygen species, interfacial and bridge, that work in concert to enable both activity and stability. The work sheds important light on the synergistic effect between the active metal center and the supporting substrate and may find broad applications for the use of atomically dispersed catalysts.


Assuntos
Monóxido de Carbono , Hidrogênio , Monóxido de Carbono/química , Oxirredução , Catálise , Hidrogênio/química , Platina/química
20.
Small ; 19(6): e2205487, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470595

RESUMO

Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3-4 nm ultrathin MgB2 nanosheets (multilayers) in high yield. High-pressure hydrogenation of these multilayers at 70 MPa and 330 °C followed by dehydrogenation at 390 °C reveals a hydrogen capacity of 5.1 wt%, which is ≈50 times larger than the capacity of bulk MgB2 under the same conditions. This enhancement is attributed to the creation of defective sites by ball-milling and incomplete Mg surface coverage in MgB2 multilayers, which disrupts the stable boron-boron ring structure. The density functional theory calculations indicate that the balance of Mg on the MgB2 nanosheet surface changes as the material hydrogenates, as it is energetically favorable to trade a small number of Mg vacancies in Mg(BH4 )2 for greater Mg coverage on the MgB2 surface. The exfoliation and creation of ultrathin layers is a promising new direction for 2D metal boride/borohydride research with the potential to achieve high-capacity reversible hydrogen storage at more moderate pressures and temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...