Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Br J Cancer ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649788

RESUMO

BACKGROUND: Immune cell infiltration is heterogeneous but common in testicular germ cell tumors (TGCT) and pre-invasive germ cell neoplasia in situ (GCNIS). Tumor-infiltrating T cells including regulatory T (Treg) and follicular helper T (Tfh) cells are found in other cancer entities, but their contributions to TGCT are unknown. METHODS: Human testis specimens from independent patient cohorts were analyzed using immunohistochemistry, flow cytometry and single-cell RNA sequencing (scRNA-seq) with special emphasis on delineating T cell subtypes. RESULTS: Profound changes in immune cell composition within TGCT, shifting from macrophages in normal testes to T cells plus B and dendritic cells in TGCT, were documented. In most samples (96%), the CD4+ T cell frequency exceeded that of CD8+ cells, with decreasing numbers from central to peripheral tumor areas, and to tumor-free, contralateral testes. T cells including Treg and Tfh were most abundant in seminoma compared to mixed tumors and embryonal carcinoma. CONCLUSION: Despite considerable heterogeneity between patients, T cell subtypes form a key part of the TGCT microenvironment. The novel finding of rare Treg and Tfh cells in human testis suggests their involvement in TGCT pathobiology, with implications for understanding tumor progression, to assess patients' prognosis, and as putative targets for personalized immunotherapy.

2.
Andrology ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577799

RESUMO

BACKGROUND: Single-cell RNA-seq (scRNA-Seq) has been widely adopted to study gene expression of the human testis. Several datasets of scRNA-Seq from human testis have been generated from different groups processed with different informatics pipelines. An integrated atlas of scRNA-Seq expression constructed from multiple donors, developmental ages, and fertility states would be widely useful for the testis research community. OBJECTIVE: To describe the generation and use of the human infertility single-cell testis atlas (HISTA), an interactive web tool for understanding human spermatogenesis through scRNA-Seq analysis. METHODS: We obtained scRNA-Seq datasets derived from 12 donors, including healthy adult controls, juveniles, and several infertility cases, and reprocessed these data using methods to remove batch effects. Using Shiny, an open-source environment for data visualization, we created numerous interactive tools for exploring the data, some of which support simple statistical hypothesis testing. We used the resulting HISTA browser and its underlying data to demonstrate HISTA's value for testis researchers. RESULTS: A primary application of HISTA is to search by a single gene or a set of genes; thus, we present various analyses that quantify and visualize gene expression across the testis cells and pathology. HISTA also contains machine-learning-derived gene modules ("components") that capture the entire transcriptional landscape of the testis tissue. We show how the use of these components can simplify the highly complex data in HISTA and assist with the interpretation of genes with unknown functions. Finally, we demonstrate the diverse ways HISTA can be used for new data analysis, including hypothesis testing. DISCUSSION AND CONCLUSIONS: HISTA is a research environment that can help scientists organize and understand the high-dimensional transcriptional landscape of the human testis. HISTA has already contributed to published testis research and can be updated as needed with input from the research community or downloaded and modified for individual needs.

3.
Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38657603

RESUMO

Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.

4.
Clin Appl Thromb Hemost ; 30: 10760296231221772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166398

RESUMO

This study investigated the efficacy and safety of pharmaco-invasive strategy with half-dose recombinant human prourokinase (PHDP) during hospitalization for patients with ST-segment elevation myocardial infarction (STEMI) to provide references for the treatment of STEMI. Patients with STEMI who fulfilled the inclusion and exclusion criteria and attended Chengde Central Hospital, Hebei Province, China, between September 3, 2019, and December 28, 2021, were included in this study. The experimental group received PHDP and the control group underwent primary percutaneous coronary intervention (PPCI). This study enrolled 150 patients with STEMI, 75 in the experimental group and 75 in the control group. Coronary angiography revealed successful thrombolysis in 64 (85.33%) patients. Compared with the control group, the experimental group had shorter first medical contact-reperfusion time (P < 0.001), less slow flow/no-reflow (P < 0.001), and a lower utilization rate of Tirofiban (P < 0.001). Validity endpoints: no statistically significant differences between the two groups. Safety endpoints: no statistically significant differences between bleeding and major adverse cardiovascular and cerebrovascular events (MACCEs), but the experimental group was more prone to arrhythmias (P = 0.040), particularly premature ventricular beats (PVB) (P = 0.008). In conclusion, the efficacy and safety of PHDP in the treatment of patients with STEMI were positive. Complete epicardial and myocardial reperfusion rates, risk for bleeding during hospitalization, and incidence of MACCEs were similar to those of the PPCI strategy. Although the PHDP group has a higher incidence of PVB, it does not increase the incidence of malignant arrhythmia. This study aimed to provide a new therapeutic strategy for the treatment of STEMI in hospitals without adequate PPCI resources condition.


Assuntos
Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Fibrinolíticos/efeitos adversos , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Resultado do Tratamento , Intervenção Coronária Percutânea/efeitos adversos , Hemorragia/induzido quimicamente , Hospitalização
5.
Nat Commun ; 14(1): 8462, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123589

RESUMO

Seminoma is the most common malignant solid tumor in 14 to 44 year-old men. However, its molecular features and tumor microenvironment (TME) is largely unexplored. Here, we perform a series of studies via genomics profiling (single cell multi-omics and spatial transcriptomics) and functional examination using seminoma samples and a seminoma cell line. We identify key gene expression programs share between seminoma and primordial germ cells, and further characterize the functions of TFAP2C in promoting tumor invasion and migration. We also identify 15 immune cell subtypes in TME, and find that subtypes with exhaustion features were located closer to the tumor region through combined spatial transcriptome analysis. Furthermore, we identify key pathways and genes that may facilitate seminoma disseminating beyond the seminiferous tubules. These findings advance our knowledge of seminoma tumorigenesis and produce a multi-omics atlas of in situ human seminoma microenvironment, which could help discover potential therapy targets for seminoma.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Seminoma/genética , Seminoma/metabolismo , Seminoma/patologia , Multiômica , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/metabolismo , Microambiente Tumoral/genética
6.
Dev Cell ; 58(20): 2097-2111.e3, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37582368

RESUMO

Formation of either an ovary or a testis during human embryonic life is one of the most important sex-specific events leading to the emergence of secondary sexual characteristics and sex assignment of babies at birth. Our study focused on the sex-specific and sex-indifferent characteristics of the prenatal ovarian stromal cells, cortical cords, and germline, with the discovery that the ovarian mesenchymal cells of the stroma are transcriptionally indistinguishable from the mesenchymal cells of the testicular interstitium. We found that first-wave pre-granulosa cells emerge at week 7 from early supporting gonadal cells with stromal identity and are spatially defined by KRT19 levels. We also identified rare transient state f0 spermatogonia cells within the ovarian cords between weeks 10 and 16. Taken together, our work illustrates a unique plasticity of the embryonic ovary during human development.


Assuntos
Gônadas , Ovário , Masculino , Feminino , Recém-Nascido , Humanos , Testículo , Células Germinativas , Análise de Célula Única
7.
J Food Sci ; 88(7): 3022-3035, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37219393

RESUMO

Mechanical damage of fresh fruit caused by compression and collision during harvesting and transportation is an urgent problem in the agricultural industry. The purpose of this work was to detect early mechanical damage of pears using hyperspectral imaging technology and advanced modeling techniques of transfer learning and convolutional neural networks. The visible/near-infrared hyperspectral imaging system was applied to obtain the intact and damaged pears at three time points (2, 12, and 24 h) after compression or collision damage. After the hyperspectral images were preprocessed and feature-extracted, ImageNet was used to pre-train ConvNeXt network, and then, transfer learning strategy was applied from compression damage to collision damage to build the T_ConvNeXt model for classification. The results showed that the test set accuracy of fine-tuned ConvNeXt model was 96.88% for compression damage time. For the classification of collision damage time, the test set accuracy of T_ConvNeXt network reached 96.61% and was 3.64% higher than the fine-tuned ConvNeXt network. The number of training samples was proportionally reduced to verify the superiority of the T_ConvNeXt model, and the model was compared with conventional machine learning algorithms. This study achieved the classification of mechanical damage over time and achieved a generalized model for different damage types. The accurate prediction of pear damage time is crucial for determining proper storage conditions and shelf-life time. PRACTICAL APPLICATION: The T_ConvNeXt model proposed in this paper transferred from compression damage to collision damage effectively promoted the generality of the damage time classification model. Guidelines for choosing an effective shelf life from a commercial aspect were presented.


Assuntos
Pyrus , Imageamento Hiperespectral , Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina
8.
Dev Cell ; 58(9): 806-821.e7, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054708

RESUMO

Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms in the primate placenta during gestation. Here, we present a single-cell transcriptome-wide view of the cynomolgus macaque placenta throughout gestation. Bioinformatics analyses and multiple validation experiments suggested that placental trophoblast cells exhibited stage-specific differences across gestation. Interactions between trophoblast cells and decidual cells also showed gestational stage-dependent differences. The trajectories of the villous core cells indicated that placental mesenchymal cells were derived from extraembryonic mesoderm (ExE.Meso) 1, whereas placental Hofbauer cells, erythrocytes, and endothelial cells were derived from ExE.Meso2. Comparative analyses of human and macaque placentas uncovered conserved features of placentation across species, and the discrepancies of extravillous trophoblast cells (EVTs) between human and macaque correlated to their differences in invasion patterns and maternal-fetal interactions. Our study provides a groundwork for elucidating the cellular basis of primate placentation.


Assuntos
Placenta , Transcriptoma , Animais , Gravidez , Feminino , Humanos , Transcriptoma/genética , Células Endoteliais , Placentação , Primatas , Macaca
9.
BMC Cancer ; 23(1): 251, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922758

RESUMO

BACKGROUND: Currently there are no established fertility preservation options for pre-pubertal boys facing cancer treatment. Granulocyte-colony stimulating factor (G-CSF) treatment has been proposed to be chemoprotective against spermatogonial cell loss in an alkylating chemotherapy model of busulfan treated adult mice. Having previously shown that exposure to the alkylating-like chemotherapy cisplatin resulted in a reduction in germ cell numbers in immature human testicular tissues, we here investigate whether G-CSF would prevent cisplatin-induced germ cell loss in immature human and mouse (fetal and pre-pubertal) testicular tissues. METHODS: Organotypic in vitro culture systems were utilised to determine the effects of clinically-relevant concentrations of G-CSF in cisplatin-exposed immature testicular tissues. Human fetal (n = 14 fetuses) and mouse pre-pubertal (n = 4 litters) testicular tissue pieces were cultured and exposed to cisplatin or vehicle control for 24 hrs and analysed at 72 and 240 hrs post-exposure. Combined G-CSF and cisplatin exposure groups explored varying concentrations and duration of G-CSF supplementation to the culture medium (including groups receiving G-CSF before, during and after cisplatin exposure). In addition, effects of G-CSF supplementation alone were investigated. Survival of total germ cell and sub-populations were identified by expression of AP2γ and MAGE-A4 for human gonocytes and (pre)spermatogonia, respectively, and MVH and PLZF, for mouse germ cells and putative spermatogonial stem cells (SSCs) respectively, were quantified. RESULTS: Exposure to cisplatin resulted in a reduced germ cell number in human fetal and mouse pre-pubertal testicular tissues at 240 hrs post-exposure. Germ cell number was not preserved by combined exposure with G-CSF using any of the exposure regimens (prior to, during or after cisplatin exposure). Continuous supplementation with G-CSF alone for 14 days did not change the germ cell composition in either human or mouse immature testicular tissues. CONCLUSIONS: This study demonstrates that exposure to G-CSF does not prevent cisplatin-induced germ cell loss in immature human and mouse testicular tissues in an in vitro system.


Assuntos
Cisplatino , Testículo , Masculino , Humanos , Animais , Camundongos , Testículo/metabolismo , Cisplatino/farmacologia , Espermatogônias , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fatores Estimuladores de Colônias/metabolismo , Fatores Estimuladores de Colônias/farmacologia , Granulócitos
10.
Nat Commun ; 13(1): 7953, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572685

RESUMO

Non-obstructive azoospermia (NOA) is the most severe form of male infertility and typically incurable. Defining the genetic basis of NOA has proven challenging, and the most advanced classification of NOA subforms is not based on genetics, but simple description of testis histology. In this study, we exome-sequenced over 1000 clinically diagnosed NOA cases and identified a plausible recessive Mendelian cause in 20%. We find further support for 21 genes in a 2-stage burden test with 2072 cases and 11,587 fertile controls. The disrupted genes are primarily on the autosomes, enriched for undescribed human "knockouts", and, for the most part, have yet to be linked to a Mendelian trait. Integration with single-cell RNA sequencing data shows that azoospermia genes can be grouped into molecular subforms with synchronized expression patterns, and analogs of these subforms exist in mice. This analysis framework identifies groups of genes with known roles in spermatogenesis but also reveals unrecognized subforms, such as a set of genes expressed across mitotic divisions of differentiating spermatogonia. Our findings highlight NOA as an understudied Mendelian disorder and provide a conceptual structure for organizing the complex genetics of male infertility, which may provide a rational basis for disease classification.


Assuntos
Azoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Azoospermia/genética , Azoospermia/patologia , Testículo/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Espermatogênese/genética
11.
Front Genet ; 13: 913372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873483

RESUMO

Long-term live-cell imaging technology has emerged in the study of cell culture and development, and it is expected to elucidate the differentiation or reprogramming morphology of cells and the dynamic process of interaction between cells. There are some advantages to this technique: it is noninvasive, high-throughput, low-cost, and it can help researchers explore phenomena that are otherwise difficult to observe. Many challenges arise in the real-time process, for example, low-quality micrographs are often obtained due to unavoidable human factors or technical factors in the long-term experimental period. Moreover, some core dynamics in the developmental process are rare and fleeting in imaging observation and difficult to recapture again. Therefore, this study proposes a deep learning method for microscope cell image enhancement to reconstruct sharp images. We combine generative adversarial nets and various loss functions to make blurry images sharp again, which is much more convenient for researchers to carry out further analysis. This technology can not only make up the blurry images of critical moments of the development process through image enhancement but also allows long-term live-cell imaging to find a balance between imaging speed and image quality. Furthermore, the scalability of this technology makes the methods perform well in fluorescence image enhancement. Finally, the method is tested in long-term live-cell imaging of human-induced pluripotent stem cell-derived cardiomyocyte differentiation experiments, and it can greatly improve the image space resolution ratio.

12.
Dev Cell ; 57(9): 1160-1176.e5, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35504286

RESUMO

Aging men display reduced reproductive health; however, testis aging is poorly understood at the molecular and genomic levels. Here, we utilized single-cell RNA-seq to profile over 44,000 cells from both young and older men and examined age-related changes in germline development and in the testicular somatic cells. Age-related changes in spermatogonial stem cells appeared modest, whereas age-related dysregulation of spermatogenesis and somatic cells ranged from moderate to severe. Altered pathways included signaling and inflammation in multiple cell types, metabolic signaling in Sertoli cells, hedgehog signaling and testosterone production in Leydig cells, cell death and growth in testicular peritubular cells, and possible developmental regression in both Leydig and peritubular cells. Remarkably, the extent of dysregulation correlated with body mass index in older but not in younger men. Collectively, we reveal candidate molecular mechanisms underlying the complex testicular changes conferred by aging and their possible exacerbation by concurrent chronic conditions such as obesity.


Assuntos
Análise de Célula Única , Testículo , Idoso , Envelhecimento , Índice de Massa Corporal , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Células de Sertoli , Espermatogênese/genética , Testículo/metabolismo
14.
Mol Cell Endocrinol ; 544: 111556, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031431

RESUMO

Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.


Assuntos
Células Intersticiais do Testículo , Testosterona , Animais , Fator Inibidor de Leucemia/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Receptores de OSM-LIF/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
15.
Mol Cancer Res ; 20(4): 501-514, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980595

RESUMO

Growth factor independence-1 (GFI1) is a transcriptional repressor and master regulator of normal and malignant hematopoiesis. Repression by GFI1 is attributable to recruitment of LSD1-containing protein complexes via its SNAG domain. However, the full complement of GFI1 partners in transcriptional control is not known. We show that in T-acute lymphoblastic leukemia (ALL) cells, GFI1 and IKAROS are transcriptional partners that co-occupy regulatory regions of hallmark T-cell development genes. Transcriptional profiling reveals a subset of genes directly transactivated through the GFI1-IKAROS partnership. Among these is NOTCH3, a key factor in T-ALL pathogenesis. Surprisingly, NOTCH3 expression by GFI1 and IKAROS requires the GFI1 SNAG domain but occurs independent of SNAG-LSD1 binding. GFI1 variants deficient in LSD1 binding fail to activate NOTCH3, but conversely, small molecules that disrupt the SNAG-LSD1 interaction while leaving the SNAG primary structure intact stimulate NOTCH3 expression. These results identify a noncanonical transcriptional control mechanism in T-ALL which supports GFI1-mediated transactivation in partnership with IKAROS and suggest competition between LSD1-containing repressive complexes and others favoring transactivation. IMPLICATIONS: Combinatorial diversity and cooperation between DNA binding proteins and complexes assembled by them can direct context-dependent transcriptional outputs to control cell fate and may offer new insights for therapeutic targeting in cancer.


Assuntos
Proteínas de Ligação a DNA , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Life Med ; 1(3): 267-269, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36817553
18.
Cell Rep ; 37(5): 109915, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731600

RESUMO

Single-cell RNA sequencing has revealed extensive molecular diversity in gene programs governing mammalian spermatogenesis but fails to delineate their dynamics in the native context of seminiferous tubules, the spatially confined functional units of spermatogenesis. Here, we use Slide-seq, a spatial transcriptomics technology, to generate an atlas that captures the spatial gene expression patterns at near-single-cell resolution in the mouse and human testis. Using Slide-seq data, we devise a computational framework that accurately localizes testicular cell types in individual seminiferous tubules. Unbiased analysis systematically identifies spatially patterned genes and gene programs. Combining Slide-seq with targeted in situ RNA sequencing, we demonstrate significant differences in the cellular compositions of spermatogonial microenvironment between mouse and human testes. Finally, a comparison of the spatial atlas generated from the wild-type and diabetic mouse testis reveals a disruption in the spatial cellular organization of seminiferous tubules as a potential mechanism of diabetes-induced male infertility.


Assuntos
Perfilação da Expressão Gênica , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/metabolismo , Transcriptoma , Algoritmos , Animais , Microambiente Celular , Bases de Dados Genéticas , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , RNA-Seq , Análise de Célula Única , Especificidade da Espécie , Espermatogônias/patologia , Testículo/patologia , Fatores de Tempo
19.
Am J Hum Genet ; 108(10): 1924-1945, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626582

RESUMO

Klinefelter syndrome (KS), also known as 47, XXY, is characterized by a distinct set of physiological abnormalities, commonly including infertility. The molecular basis for Klinefelter-related infertility is still unclear, largely because of the cellular complexity of the testis and the intricate endocrine and paracrine signaling that regulates spermatogenesis. Here, we demonstrate an analysis framework for dissecting human testis pathology that uses comparative analysis of single-cell RNA-sequencing data from the biopsies of 12 human donors. By comparing donors from a range of ages and forms of infertility, we generate gene expression signatures that characterize normal testicular function and distinguish clinically distinct forms of male infertility. Unexpectedly, we identified a subpopulation of Sertoli cells within multiple individuals with KS that lack transcription from the XIST locus, and the consequence of this is increased X-linked gene expression compared to all other KS cell populations. By systematic assessment of known cell signaling pathways, we identify 72 pathways potentially active in testis, dozens of which appear upregulated in KS. Altogether our data support a model of pathogenic changes in interstitial cells cascading from loss of X inactivation in pubertal Sertoli cells and nominate dosage-sensitive factors secreted by Sertoli cells that may contribute to the process. Our findings demonstrate the value of comparative patient analysis in mapping genetic mechanisms of disease and identify an epigenetic phenomenon in KS Sertoli cells that may prove important for understanding causes of infertility and sex chromosome evolution.


Assuntos
Infertilidade Masculina/patologia , Síndrome de Klinefelter/complicações , Células Intersticiais do Testículo/patologia , Células de Sertoli/patologia , Análise de Célula Única/métodos , Testículo/patologia , Transcriptoma , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Síndrome de Klinefelter/cirurgia , Células Intersticiais do Testículo/metabolismo , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Testículo/metabolismo , Inativação do Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...