Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324761

RESUMO

Versatile, informative, sensitive, and specific nucleic acid detection plays a crucial role in point-of-care pathogen testing, genotyping, and disease monitoring. In this study, we present a novel one-pot Cas12b-based method coupled with the "Green-Yellow-Red" strategy for multiplex detection. By integrating RT-LAMP amplification and Cas12b cleavage in a single tube, the entire detection process can be completed within 1 h. Our proposed method exhibits high specificity, enabling the discrimination of single-base mutations with detection sensitivity approaching single molecule levels. Additionally, the fluorescent results can be directly observed by the naked eye or automatically analyzed using our custom-designed software Result Analyzer. To realize point-of-care detection, we developed a portable cartridge capable of both heating and fluorescence excitation. In a clinical evaluation involving 20 potentially SARS-CoV-2-infected samples, our method achieved a 100% positive detection rate when compared to standard RT-PCR. Furthermore, the identification of SARS-CoV-2 variants using our method yielded results that were consistent with the sequencing results. Notably, our proposed method demonstrates excellent transferability, allowing for the simultaneous detection of various pathogens and the identification of mutations as low as 0.5% amidst a high background interference. These findings highlight the tremendous potential of our developed method for molecular diagnostics.

2.
Biosensors (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887103

RESUMO

Bloodstream infection is a major health problem worldwide, with extremely high mortality. Detecting infection in the early stage is challenging due to the extremely low concentration of bacteria in the blood. Digital PCR provides unparalleled sensitivity and can achieve absolute quantification, but it is time-consuming. Moreover, the presence of unavoidable background signals in negative controls poses a significant challenge for single-molecule detection. Here, we propose a novel strategy called "Ultrafast flexible thin tube-based droplet digital PCR (utPCR)" that can shorten the digital PCR process from 2 h to only 5 min, with primer annealing/extension time reduced from minutes to only 5 s. Importantly, the ultrafast PCR eliminates nonspecific amplification and thus enables single-molecule detection. The utPCR enabled the sensitive detection and digital quantification of E. coli O157 in the high background of a 106-fold excess of E. coli K12 cells. Moreover, this method also displayed the potential to detect rare pathogens in blood samples, and the limit of detection (LOD) could be as low as 10 CFU per mL of blood without false positive results. Considered ultrafast (<5 min) and highly sensitive (single-molecule detection), the utPCR holds excellent prospects in the next generation of molecular diagnosis.


Assuntos
Escherichia coli K12 , Escherichia coli O157 , Sepse , Humanos , Reação em Cadeia da Polimerase/métodos , Limite de Detecção , Escherichia coli K12/genética
3.
Radiother Oncol ; 186: 109790, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414256

RESUMO

PURPOSE/OBJECTIVE(S): To investigate intrafraction motion of (HN) target volumes and to determine patient-specific planning target volume (PTV) margins. MATERIALS/METHODS: MR-cine imaging was performed for radiation treatment planning in HN cancer patients treated with definitive EBRT (n = 62) or SBRT (n = 4) on a 1.5 T MRI between 2017-2019. Dynamic MRI scans (sagittal orientation, 2 × 82 × 7 mm3 resolution), ranging from 3-5 min and 900-1500 images, were acquired. The position of the maximum tumor displacement along each direction in the anterior/posterior (A/P) and superior/inferior (S/I) position was recorded and analyzed to determine average PTV margins. RESULTS: Primary tumor sites (n = 66) were oropharynx (n = 39), larynx (n = 24) and hypopharynx (n = 3). PTV margins for A/P/S/I positions were 4.1/4.4/5.0/6.2 mm and 4.9/4.3/6.7/7.7 mm for oropharyngeal and laryngeal/hypopharyngeal cancers when accounting for all motion. V100 for PTV was calculated and compared to the original plans. The mean drop in PTV coverage was in most cases under 5%. For a subset of patients with 3 mm plans available, V100 for PTV had more substantial decreases in coverage averaging 8.2% - and 14.3% for oropharyngeal and laryngeal/hypopharynx plans, respectively. CONCLUSION: The use of MR-cine in treatment planning allows for quantification of tumor motion during swallow and resting periods and should be accounted for during treatment planning. With motion considered, the derived margins may exceed the commonly used 3-5 mm PTV margins. Quantification and analysis of tumor and patient-specific PTV margins is a step towards real-time MRI guidance adaptive radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Humanos , Imagem Cinética por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador/métodos , Movimento (Física) , Imageamento por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Dosagem Radioterapêutica
4.
Aging Cell ; 22(9): e13937, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37503695

RESUMO

Alzheimer's disease (AD) is characterized with senile plaques formed by Aß deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Fosfatidilinositol 3-Quinases/uso terapêutico , Apoptose , Modelos Animais de Doenças , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo
5.
J Neuroinflammation ; 19(1): 71, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346242

RESUMO

BACKGROUND: After traumatic brain injury (TBI), an acute, robust inflammatory cascade occurs that is characterized by the activation of resident cells such as microglia, the migration and recruitment of peripheral immune cells and the release of inflammatory mediators that induce secondary cell death and impede neurological recovery. In addition, neuroinflammation can alter blood-brain barrier (BBB) permeability. Controlling inflammatory responses is considered a promising therapeutic approach for TBI. Hydroxychloroquine (HCQ) has already been used clinically for decades, and it is still widely used to treat various autoimmune diseases. However, the effects of HCQ on inflammation and the potential mechanism after TBI remain to be defined. The aim of the current study was to elucidate whether HCQ could improve the neurological recovery of mice post-TBI by inhibiting the inflammatory response via the TLR4/NF-κB signaling pathway. METHODS: C57BL/6 mice were subjected to controlled cortical impact (CCI) and randomly divided into groups that received intraperitoneal HCQ or vehicle daily after TBI. TAK-242 (3.0 mg/kg), an exogenous TLR4 antagonist, was injected intraperitoneally 1 h before TBI. Behavioral assessments were performed on days 1 and 3 post-TBI, and the gene expression levels of inflammatory cytokines were analyzed by qRT-PCR. The presence of infiltrated immune cells was examined by flow cytometry and immunostaining. In addition, BBB permeability, tight junction expression and brain edema were investigated. RESULTS: HCQ administration significantly ameliorated TBI-induced neurological deficits. HCQ alleviated neuroinflammation, the activation and accumulation of microglia and immune cell infiltration in the brain, attenuated BBB disruption and brain edema, and upregulated tight junction expression. Combined administration of HCQ and TAK-242 did not enhance the neuroprotective effects of HCQ. CONCLUSIONS: HCQ reduced proinflammatory cytokine expression, and the underlying mechanism may involve suppressing the TLR4/NF-κB signaling pathway, suggesting that HCQ is a potential therapeutic agent for TBI treatment.


Assuntos
Lesões Encefálicas Traumáticas , NF-kappa B , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
6.
J Appl Clin Med Phys ; 22(11): 99-114, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34697889

RESUMO

On-treatment EPID images are contaminated with patient-generated scattered photons. If this component can be accurately estimated, its effect can be removed, and therefore a corresponding in vivo patient dose estimate will be more accurate. Our group previously developed a "tri-hybrid" (TH) algorithm to provide fast but accurate estimates of patient-generated photon scatter. The algorithm uses an analytical method to solve for singly-scattered photon fluence, a modified Monte Carlo hybrid method to solve for multiply-scattered photon fluence, and a pencil beam scatter kernel method to solve for electron interaction generated scattered photon fluence. However, for efficient clinical implementation, spatial and energy sampling must be optimized for speed while maintaining overall accuracy. In this work, the most significant sampling issues were examined, including spatial sampling settings for the patient voxel size, the number of Monte Carlo histories used in the modified hybrid MC method, scatter order sampling for the hybrid method, and also a range of energy spectrum sampling (i.e., energy bin sizes). The total predicted patient-scattered photon fluence entering the EPID was compared with full MC simulation (EGSnrc) for validation. Three phantoms were tested with 6 and 18 MV beam energies, field sizes of 4 × 4, 10 × 10, and 20 × 20 cm2 , and source-to-imager distance of 140 cm to develop a set of optimal sampling settings. With the recommended sampling, accuracy and precision of the total-scattered energy fluence of the TH patient scatter prediction method are within 0.9% and 1.2%, respectively, for all test cases compared with full MC simulation results. For the mean energy spectrum across the imaging plane, comparison of TH with full MC simulation showed 95% overlap. This study has optimized sampling settings so that they have minimal impact on patient scatter prediction accuracy while maintaining maximum execution speed, a critical step for future clinical implementation.


Assuntos
Algoritmos , Fótons , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Espalhamento de Radiação
7.
Biol Psychiatry ; 89(5): 521-531, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190846

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) is essential for social behaviors, yet whether and how it encodes social memory remains unclear. METHODS: We combined whole-cell patch recording, morphological analysis, optogenetic/chemogenetic manipulation, and the TRAP (targeted recombination in active populations) transgenic mouse tool to study the social-associated neural populations in the mPFC. RESULTS: Fos-TRAPed prefrontal social-associated neurons are excitatory pyramidal neurons with relatively small soma sizes and thin-tufted apical dendrite. These cells exhibit intrinsic firing features of dopamine D1 receptor-like neurons, show persisting firing pattern after social investigation, and project dense axons to nucleus accumbens. In behaving TRAP mice, selective inhibition of prefrontal social-associated neurons does not affect social investigation but does impair subsequent social recognition, whereas optogenetic reactivation of their projections to the nucleus accumbens enables recall of a previously encountered but "forgotten" mouse. Moreover, chemogenetic activation of mPFC-to-nucleus accumbens projections ameliorates MK-801-induced social memory impairments. CONCLUSIONS: Our results characterize the electrophysiological and morphological features of social-associated neurons in the mPFC and indicate that these Fos-labeled, social-activated prefrontal neurons are necessary and sufficient for social memory.


Assuntos
Memória , Córtex Pré-Frontal , Animais , Camundongos , Neurônios , Núcleo Accumbens , Comportamento Social
8.
Phys Med Biol ; 65(18): 185008, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32516759

RESUMO

In vivo dosimetry methods can verify the prescription dose is delivered to the patient during treatment. Unfortunately, in exit dosimetry, the megavoltage image is contaminated with patient-generated scattered photons. However, estimation and removal of the effect of this fluence improves accuracy of in vivo dosimetry methods. This work develops a 'tri-hybrid' algorithm combining analytical, Monte Carlo (MC) and pencil-beam scatter kernel methods to provide accurate estimates of the total patient-generated scattered photon fluence entering the MV imager. For the multiply-scattered photon fluence, a modified MC simulation method was applied, using only a few histories. From each second- and higher-order interaction site in the simulation, energy fluence entering all pixels of the imager was calculated using analytical methods. For photon fluence generated by electron interactions in the patient (i.e. bremsstrahlung and positron annihilation), a convolution/superposition approach was employed using pencil-beam scatter fluence kernels as a function of patient thickness and air gap distance, superposed on the incident fluence distribution. The total patient-scattered photon fluence entering the imager was compared with a corresponding full MC simulation (EGSnrc) for several test cases. These included three geometric phantoms (water, half-water/half-lung, computed tomography thorax) using monoenergetic (1.5, 5.5 and 12.5 MeV) and polyenergetic (6 and 18 MV) photon beams, 10 × 10 cm2 field, source-to-surface distance 100 cm, source-to-imager distance 150 cm and 40 × 40 cm2 imager. The proposed tri-hybrid method is demonstrated to agree well with full MC simulation, with the average fluence differences and standard deviations found to be within 0.5% and 1%, respectively, for test cases examined here. The method, as implemented here with a single CPU (non-parallelized), takes ∼80 s, which is considerably shorter compared to full MC simulation (∼30 h). This is a promising method for fast yet accurate calculation of patient-scattered fluence at the imaging plane for in vivo dosimetry applications.


Assuntos
Equipamentos e Provisões Elétricas , Dosimetria in Vivo/métodos , Fótons , Espalhamento de Radiação , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
9.
Nano Lett ; 20(6): 4073-4083, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396366

RESUMO

How neuromodulatory transmitters diffuse into the extracellular space remains an unsolved fundamental biological question, despite wide acceptance of the volume transmission model. Here, we report development of a method combining genetically encoded fluorescent sensors with high-resolution imaging and analysis algorithms which permits the first direct visualization of neuromodulatory transmitter diffusion at various neuronal and non-neuronal cells. Our analysis reveals that acetylcholine and monoamines diffuse at individual release sites with a spread length constant of ∼0.75 µm. These transmitters employ varied numbers of release sites, and when spatially close-packed release sites coactivate they can spillover into larger subcellular areas. Our data indicate spatially restricted (i.e., nonvolume) neuromodulatory transmission to be a prominent intercellular communication mode, reshaping current thinking of control and precision of neuromodulation crucial for understanding behaviors and diseases.

10.
Phys Med Biol ; 65(9): 09NT02, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32160599

RESUMO

Scattered radiation unavoidably generated in the patient will negatively impact both kilovoltage (KV) and megavoltage (MV) imaging applications. Recently, 'hybrid' methods (i.e. combining analytical and Monte Carlo (MC) techniques) are being investigated as a solution to accurately yet quickly calculate the scattered contribution for both KV and MV images. We have developed a customized MC simulation user code for investigating the individual components of patient-scattered photon fluence, which serves as a valuable tool in this area of research. The MC tool is based on the EGSnrc/DOSXYZnrc user code. The IAUSFL flag options associated with subroutine AUSGAB, combined with LATCH tracking, are used to classify the various interactions of particles with the media. Photons are grouped into six different categories: primary, 1st Compton scatter, 1st Rayleigh scatter, multiple scatter, bremsstrahlung, and positron annihilation. We take advantage of the geometric boundary check in DOSXYZnrc, to write exiting photon particle information to a phase-space file. The tool is validated using homogeneous and heterogeneous phantom configurations with monoenergetic and polyenergetic beams under parallel and divergent beam geometry, comparing MC-simulated exit primary fluence and singly-scattered fluence to corresponding analytical calculations. This MC tool has been validated to separately score the primary and scatter fluence components of the KV and MV imaging applications in the field of radiation therapy. The results are acceptable for the various configurations and beam energies tested here. Overall, the mean percentage differences are less than 0.2% and standard deviations less than 1.6%. This will be a critical test instrument for research in photon scatter applications and particularly for the development of hybrid methods, and is freely available from the authors for research purposes.5.


Assuntos
Simulação por Computador , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Espalhamento de Radiação , Elétrons , Humanos
11.
Front Pharmacol ; 11: 154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184729

RESUMO

Major depressive disorder is a serious neuropsychiatric disorder with high rates of recurrence and mortality. Many studies have supported that inflammatory processes play a central role in the etiology of depression. Fibroblast growth factor 21 (FGF21), a member of the fibroblast growth factors (FGFs) family, regulates a variety of pharmacological activities, including energy metabolism, glucose and lipid metabolism, and insulin sensitivity. In addition, recent studies showed that the administration of FGF21, a regulator of metabolic function, had therapeutic effects on mood stabilizers, indicating that FGF21 could be a common regulator of the mood response. However, few studies have highlighted the antidepressant effects of FGF21 on lipopolysaccharide (LPS)-induced mice, and the anti-inflammatory mechanism of FGF21 in depression has not yet been elucidated. The purpose of the current study was to determine the antidepressant effects of recombinant human FGF21 (rhFGF21). The effects of rhFGF21 on depression-like behaviors and the inflammatory signaling pathway were investigated in both an LPS-induced mouse model and primary microglia in vitro. The current study demonstrated that LPS induced depressive-like behaviors, upregulated proinflammatory cytokines, and activated microglia in the mouse hippocampus and activated the inflammatory response in primary microglia, while pretreatment with rhFGF21 markedly improved depression-like behavior deficits, as shown by an increase in the total distance traveled and number of standing numbers in the open field test (OFT) and a decrease in the duration of immobility in the tail suspension test (TST) and forced swimming test (FST). Furthermore, rhFGF21 obviously suppressed expression levels of the proinflammatory cytokines interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) and inhibited microglial activation and the nuclear factor-κB (NF-κB) signing pathway. Moreover, coadministration of rhFGF21 with the fibroblast growth factor receptor 1 (FGFR1) inhibitor PD173074 significantly reversed these protective effects, indicating that the antidepressant effects of rhFGF21 occur through FGFR1 activation. Taken together, the results of the current study demonstrated for the first time that exogenous rhFGF21 ameliorated LPS-induced depressive-like behavior by inhibiting microglial expression of proinflammatory cytokines through NF-κB suppression. This new discovery suggests rhFGF21 as a new therapeutic candidate for depression treatment.

12.
Front Pharmacol ; 11: 590669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33568994

RESUMO

Disruption of the blood-brain barrier (BBB) and the cerebral inflammatory response occurring after traumatic brain injury (TBI) facilitate further brain damage, which leads to long-term complications of TBI. Fibroblast growth factor 20 (FGF20), a neurotrophic factor, plays important roles in brain development and neuronal homeostasis. The aim of the current study was to assess the protective effects of FGF20 on TBI via BBB maintenance. In the present study, recombinant human FGF20 (rhFGF20) reduced neurofunctional deficits, brain edema, Evans blue extravasation and neuroinflammation in a TBI mouse model. In an in vitro TNF-α-induced human brain microvascular endothelial cell (HBMEC) model of BBB disruption, rhFGF20 reduced paracellular permeability and increased trans-endothelial electrical resistance (TEER). Both in the TBI mouse model and in vitro, rhFGF20 increased the expression of proteins composing in BBB-associated tight junctions (TJs) and adherens junctions (AJs), and decreased the inflammatory response, which protected the BBB integrity. Notably, rhFGF20 preserved BBB function by activating the AKT/GSK3ß pathway and inhibited the inflammatory response by regulating the JNK/NFκB pathway. Thus, FGF20 is a potential candidate treatment for TBI that protects the BBB by upregulating junction protein expression and inhibiting the inflammatory response.

13.
Phys Med Biol ; 64(14): 145008, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31252423

RESUMO

Various techniques of deep inspiration breath hold (DIBH) have been used to mitigate the likelihood and risk of exposing the heart, an organ-at-risk (OAR) for unintended radiation during left breast radiotherapy. However, issues of reproducibility of these techniques warrant further investigation into the feasibility of detecting the intrusion of an OAR into the treatment field during intra-fractional treatment delivery. The increase of high-dose, low-fraction radiotherapy treatments makes it important to immediately adapt treatment once an OAR is detected in the treatment field. This proof-of-concept implementation includes an algorithm that detects and tracks the motion at the edges of a treatment field and a control algorithm that adapts the treatment aperture according to the motion detected. In accordance to the AAPM Task-Group (TG-132) report, image registration techniques should be verified with virtual and physical phantoms prior to clinical application. Since most OARs move as a result of respiration-induced motion, we have used a lung phantom to generate images of a generic OAR intruding into a treatment field with known velocity. The phantom was programmed to move with sinusoidal and lung patient tumor motion patterns and the accuracy of intrusion tracking and MLC adaptation were benchmarked with the ground truth-programmed motion of the OAR. The motions were recorded with an electronic portal imaging device (EPID). An optimal cluster size of 9 × 9 motion vectors was found to provide the smallest average absolute position error of 0.3 mm. A strong linear correlation between the adapted MLC leaves and the actual OAR position was observed. The algorithm had a mean position tracking error of -0.4 ± 0.3 mm and a precision of 1.1 mm. It is possible to adapt MLC leaves based on the motion detected at the edges of the irradiated field, and it would be feasible to shield an unplanned intrusion of an OAR into the treatment field.


Assuntos
Algoritmos , Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Humanos , Movimento , Reprodutibilidade dos Testes , Respiração , Técnicas de Imagem de Sincronização Respiratória/instrumentação
14.
FASEB J ; 33(9): 9858-9870, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31166803

RESUMO

Wound healing, especially for diabetic wounds, is a lengthy and complicated process involving interactions and responses at the protein, cell, and tissue levels. Loading of growth factors into a hydrogel to construct a sustained-release system is considered a promising approach to improve wound healing. The present study investigates the effect of thermosensitive heparin-poloxamer (HP) hydrogel-encapsulated recombinant human fibroblast growth factor 21 (rhFGF21) on wound healing in mice with streptozotocin-induced diabetes mellitus. First, we studied the in vitro release of rhFGF21 from the rhFGF21-HP coacervate. The results showed that HP might control the release of rhFGF21. Next, we examined the effect of rhFGF21-HP on skin wound healing in diabetic mice. Our data showed that rhFGF21-HP significantly improved wound closure; promoted granulation, collagen deposition, and re-epithelialization; and enhanced the expression of CD31. Moreover, rhFGF21-HP had obvious advantages in diabetic wound healing. Therefore, the results suggest that the rhFGF21-HP hydrogel polymer plays an important role in skin wound healing. This work provides a suitable sustained-release delivery system that can continuously release rhFGF21 and presents a promising therapeutic strategy for wound healing in patients with diabetes.-Liu, H., Zhao, Y., Zou, Y., Huang, W., Zhu, L., Liu, F., Wang, D., Guo, K., Hu, J., Chen, J., Ye, L., Li, X., Lin, L. Heparin-poloxamer hydrogel-encapsulated rhFGF21 enhances wound healing in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Fatores de Crescimento de Fibroblastos/farmacologia , Heparina/química , Hidrogéis/química , Poloxâmero/química , Cicatrização/efeitos dos fármacos , Animais , Glicemia , Formas de Dosagem , Liberação Controlada de Fármacos , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/química , Teste de Tolerância a Glucose , Humanos , Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes
15.
Med Biol Eng Comput ; 57(8): 1657-1672, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31089863

RESUMO

Accurate tracking of organ motion during treatment is needed to improve the efficacy of radiation therapy. This work investigates the feasibility of tracking an uncontoured target using the motion detected within a moving treatment aperture. Tracking was achieved with a weighted optical flow algorithm, and three different techniques for updating the reference image were evaluated. The accuracy and susceptibility of each approach to the accumulation of position errors were verified using a 3D-printed tumor (mounted on an actuator) and a virtual treatment aperture. Tumor motion up to 15.8 mm (peak-to-peak) taken from the breathing patterns of seven lung cancer patients was acquired using an amorphous silicon portal imager at ~ 7.5 frames/s. The first approach (INI) used the initial image detected, as a fixed reference, to determine the target motion for each new incoming image, and performed the best with the smallest errors. This method was also the most robust against the accumulation of position errors. Mean absolute errors of 0.16, 0.32, and 0.38 mm were obtained for the three methods, respectively. Although the errors are comparable to other tracking methods, the proposed method does not require prior knowledge of the tumor shape and does not need a tumor template or contour for tracking. Graphical abstract.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Radioterapia Conformacional/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Impressão Tridimensional , Planejamento da Radioterapia Assistida por Computador , Respiração
16.
Exp Neurol ; 317: 34-50, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802446

RESUMO

Perinatal asphyxia often results in neonatal cerebral hypoxia-ischemia (HI), which is associated with high mortality and severe long-term neurological deficits in newborns. Currently, there are no effective drugs to mitigate the functional impairments post-HI. Previous studies have shown that fibroblast growth factor 21 (FGF21) has a potential neuroprotective effect against brain injury. However, the effect of FGF21 on neonatal HI brain injury is unclear. In the present study, both in vivo and in vitro models were used to assess whether recombinant human FGF21 (rhFGF21) could exert a neuroprotective effect after HI and explore the associated mechanism. The results showed that the rhFGF21 treatment remarkably reduced the infarct volume, ameliorated the body weight and improved the tissue structure after HI in neonatal rats. In addition, the rhFGF21 treatment lengthened the running endurance times in the rotarod test and decreased the mean escape latencies and increased the number of platform crossings in the Morris water maze test at 21 d post-HI insult. In contrast, the FGFR1 inhibitor PD173074 and PI3K inhibitor LY294002 partially reversed these therapeutic effects. In isolated primary cortical neurons, the rhFGF21 treatment protected primary neurons from oxygen-glucose deprivation (OGD) insult by inhibiting neuronal apoptosis and promoting neuronal survival. Both our in vivo and in vitro results reveal that rhFGF21 could inhibit neuronal apoptosis by activating the PI3K/Akt signaling pathway via FGF21/FGFR1/ß-klotho complex formation. Therefore, rhFGF21 may be a promising therapeutic agent for promoting functional recovery after HI-induced neonatal brain injury.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Glucuronidase/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Peso Corporal , Infarto Encefálico/patologia , Infarto Encefálico/prevenção & controle , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Hipóxia-Isquemia Encefálica/psicologia , Proteínas Klotho , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...