Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 933: 173086, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734102

RESUMO

The ecological security (ES) of the reservoir complex ecosystem (RCE) is one of the critical components of watershed water security and sustainable development. Hence, accurately assessing the ES of the RCE is of utmost importance. This study proposed a novel ecological security assessment model based on the improved three-dimensional emergy ecological footprint (ESM-IEEF3D), which integrated various emergy flows during the RCE's construction and operation into a three-dimensional emergy ecological footprint (EEF3D) calculation account. The Three Gorges Project (TGP) is selected as a case study to evaluate the ES from 1993 to 2022 comprehensively. The results showed that the Three Gorges RCE mainly showed an ecological remainder state, and the inflow runoff enormously promoted the TGP's sustainability. The EEF3D indicated a fluctuation decrease trend with a mean value of 7.18 × 102 ha, illustrating that TGP's ecological security and sustainability levels are gradually improving. Regarding the ES evaluation indicators, the TGP's resource dependency and ecological pressure on the natural ecosystem and the external socio-economic system are steadily relieved. Furthermore, the Three Gorges RCE's resource utilization condition is safe, the structural characteristics are healthy, and the eco-economic coordination degree is continuously enlightening. Finally, applicable policy implications for improving the ecological security of Three Gorges RCE were provided. This study helps to understand the complex relationship between humans and ecosystems. It provides a novel framework to be used as an evaluation index and policy insights for hydropower ecological security and sustainable development.

3.
Adv Mater ; : e2402001, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597787

RESUMO

Molecular semiconductor (MSC) is a promising candidate for spintronic applications benefiting from its long spin lifetime caused by light elemental-composition essence and thus weak spin-orbit coupling (SOC). According to current knowledge, the SOC effect, normally dominated by the elemental composition, is the main spin-relaxation causation in MSCs, and thus the molecular structure-induced SOC change is one of the most concerned issues. In theoretical study, molecular isomerism, a most prototype phenomenon, has long been considered to possess little difference on spin transport previously, since elemental compositions of isomers are totally the same. However, here in this study, quite different spin-transport performances are demonstrated in ITIC and its structural isomers BDTIC experimentally, for the first time, though the charge transport and molecular stacking of the two films are very similar. By further experiments of electron-paramagnetic resonance and density-functional-theory calculations, it is revealed that noncovalent-conformational locks (NCLs) formed in BDTIC can lead to enhancement of SOC and thus decrease the spin lifetime. Hence, this study suggests the influences from the structural-isomeric effect must be considered for developing highly efficient spin-transport MSCs, which also provides a reliable theoretical basis for solving the great challenge of quantificational measurement of NCLs in films in the future.

4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474046

RESUMO

Post-translational modification of proteins plays a critical role in plant-pathogen interactions. Here, we demonstrate in Nicotiana benthamiana that knockout of NbHAG1 promotes Chinese wheat mosaic virus (CWMV) infection, whereas NbHAG1 overexpression inhibits infection. Transcriptome sequencing indicated that a series of disease resistance-related genes were up-regulated after overexpression of NbHAG1. In addition, cleavage under targets and tagmentation (Cut&Tag)-qPCR results demonstrated that NbHAG1 may activate the transcription of its downstream disease-resistance genes by facilitating the acetylation level of H3K36ac. Therefore, we suggest that NbHAG1 is an important positive regulator of resistance to CWMV infestation.


Assuntos
Resistência à Doença , Vírus de Plantas , Humanos , Vírus de Plantas/genética , Processamento de Proteína Pós-Traducional , Doenças das Plantas , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
5.
Nat Commun ; 15(1): 865, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286850

RESUMO

Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study.

6.
J Environ Manage ; 351: 119940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169259

RESUMO

Water-related issues in transboundary basins are generally complicated by the challenges of climate change, the historical evolution of the basin characteristics, and the different interests of the riparian countries. Therefore, dealing with water-sharing and water cooperation problems among basin countries needs to be based on multi-factor system analysis in the context of regional water, energy, food (land) resources, and ecosystems. In the present study, the Aral Sea basin in Central Asia, where transboundary water problems are extremely prominent and complex, was selected as the research area. Firstly, the characteristics of the water-energy-food-ecosystem nexus of the Aral Sea basin are analyzed. Then, based on the game theory, a multi-objective game model is constructed, and the multi-objective evolutionary game process and evolutionary stable strategies (ESSs) of both the upstream and downstream countries are explored. Finally, the evolutionary stable strategy under the intervention of the basin commission is simulated. The results show that there are obvious reciprocal feedbacks among water, land, energy, and ecosystem in the Aral Sea basin, and the uneven distribution of natural resources, fragile ecosystems, and conflicting demands of multiple actors lead to the unstable evolution of the nexus. Driven by the maximization of upstream and downstream countries' respective interests, the optimal stabilization strategy of the system cannot be realized. Whereas, the introduction of the basin commission intervention and its restraint mechanism is conducive to promoting cooperation and maximizing the overall benefits of the basin. The incentives and penalties of the basin commission have significant effects on whether the system can reach Pareto optimality, and higher incentive coefficient and penalty coefficient help the system converge to the ideal state more quickly. The evolution of the water-energy-food-ecosystem nexus based on the perspective of the whole basin can provide theoretical support for dealing with the transboundary water conflicts, and the cooperation strategy aiming at maximizing the overall benefits of the basin can provide decision-making basis for promoting transboundary water cooperation and synergistic development of the water-energy-food-ecosystem nexus.


Assuntos
Ecossistema , Água , Abastecimento de Água , Poluição da Água , Ásia
7.
Nanoscale Horiz ; 8(9): 1132-1154, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37424331

RESUMO

The advent of spintronics has undoubtedly revolutionized data storage, processing, and sensing applications. Organic semiconductors (OSCs), characterized by long spin relaxation times (>µs) and abundant spin-dependent properties, have emerged as promising materials for advanced spintronic applications. To successfully implement spin-related functions in organic spintronic devices, the four fundamental processes of spin generation, transport, manipulation, and detection form the main building blocks and are commonly in demand. Thereinto, the effective generation of spin polarization in OSCs is a precondition, but in practice, this has not been an easy task. In this context, considerable efforts have been made on this topic, covering novel materials systems, spin-dependent theories, and device fabrication technologies. In this review, we underline recent advances in external spin injection and organic property-induced spin polarization, according to the distinction between the sources of spin polarization. We focused mainly on summarizing and discussing both the physical mechanism and representative research on spin generation in OSCs, especially for various spin injection methods, organic magnetic materials, the chiral-induced spin selectivity effect, and the spinterface effect. Finally, the challenges and prospects that allow this topic to continue to be dynamic were outlined.

8.
Adv Mater ; : e2301854, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309258

RESUMO

The explosive growth of the information era has put forward urgent requirements for ultrahigh-speed and extremely efficient computations. In direct contrary to charge-based computations, spintronics aims to use spins as information carriers for data storage, transmission, and decoding, to help fully realize electronic device miniaturization and high integration for next-generation computing technologies. Currently, many novel spintronic materials have been developed with unique properties and multifunctionalities, including organic semiconductors (OSCs), organic-inorganic hybrid perovskites (OIHPs), and 2D materials (2DMs). These materials are useful to fulfill the demand for developing diverse and advanced spintronic devices. Herein, these promising materials are systematically reviewed for advanced spintronic applications. Due to the distinct chemical and physical structures of OSCs, OIHPs, and 2DMs, their spintronic properties (spin transport and spin manipulation) are discussed separately. In addition, some multifunctionalities due to photoelectric and chiral-induced spin selectivity (CISS) are overviewed, including the spin-filter effect, spin-photovoltaics, spin-light emitting devices, and spin-transistor functions. Subsequently, challenges and future perspectives of using these multifunctional materials for the development of advanced spintronics are presented.

9.
Adv Mater ; 35(31): e2300055, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37021326

RESUMO

Abundant spin-related phenomena that originate from interfaces between ferromagnetic electrodes and molecular semiconductors have greatly enriched research in spintronics, and they are considered promising for realizing novel spintronic functionalities in the future. However, despite great effort, the interfacial effect cannot be precisely controlled to achieve steady and predictable functions, especially at room temperature, and this has gradually become a significant bottleneck in the development of molecular spintronics. In this study, an innovative spin-filtering-competition mechanism is proposed to continuously modulate the interfacial effect in molecular spin valves at room temperature. To form this novel mechanism, the original spin-filtering effect from pure cobalt competes with the newly generated one, which is induced by the bonding effect between cobalt and lithium fluoride. Subsequently, by precisely controlling competition through lithium fluoride coverage on the cobalt surface, continuous modulation of the spin-injection process can be successfully achieved at room temperature. Spin polarization of the injected current and magnetoresistance effect can be actively controlled or their sign can be completely reversed through this novel mechanism. This study provides an innovative approach and theory for precisely controlling spin-related interfacial effects, which may further promote the scientific and technological development of spintronics.

10.
J Sci Food Agric ; 103(5): 2459-2472, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36588174

RESUMO

BACKGROUND: As a traditional Chinese condiment, douchi has attracted attention in Asian and European countries because of its high nutrient content and unique flavors. Douchi is currently produced mostly by natural fermentation. The quality of douchi produced in this way is affected by microbial species, temperature, humidity, and season, so the physical and chemical properties of the product, the content of flavor substances, and its safety vary. In this study, four safe strains with high protease activity, screened previously, namely Bacillus velezensis, Bacillus amyloliquefaciens, Lichtheimia ramosa, and Lichtheimia corymbifera, were used as starter cultures for douchi fermentation. RESULTS: After 35 days, the results showed that the pH, titratable acids, free amino-type nitrogen, amino acids, the total number of colonies, and neutral protease activity of all samples had reached an average level. Through gas chromatography-mass spectrometry (GC-MS), the content of key aroma substances aldehydes and esters was higher than in commercial douchi and the free amino acid content of douchi fermented by the four strains was three to five times that of commercial douchi. Douchi fermented by Bacillus amyloliquefaciens had more flavor substances and the highest 2, 2-diphenyl-1-(2, 4, 6-trinitrophenyl) hydrazyl (DPPH) free radical scavenging rates of 92.4%. Four samples yielded total phenolic content and soy isoflavones in the range of 0.98-1.93 g kg-1 and 0.58-0.89 g kg-1 , respectively. CONCLUSION: These findings indicate that the use of a high-protease activity starter to produce douchi can improve the quality of douchi to a certain extent. The douchi obtained using Bacillus amyloliquefaciens not only has a good flavor but also has a high level of antioxidant activity. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Peptídeo Hidrolases , Antioxidantes/metabolismo , Fermentação , Peptídeo Hidrolases/metabolismo , Aminoácidos/metabolismo , Endopeptidases/metabolismo
11.
Angew Chem Int Ed Engl ; 62(4): e202213208, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445822

RESUMO

As a new type of inorganic-organic hybrid semiconductor, quantum-confined atomically precise metal nanoclusters (MNCs) have been widely applied in the fields of chemical sensing, optical imaging, biomedicine and catalysis. Herein, we successfully design and fabricate the first example of MNC-based spin valves (SVs) that exhibit remarkable magnetoresistance (MR) value up to 1.6 % even at room temperature (300 K). The concomitant photoresponse of MNC-based SVs unambiguously confirms that the spin-polarized electron transmission takes place across the MNC interlayer. Furthermore, the spin-dependent transport property of MNC-based SVs is largely varied by changing the atomic structure of MNCs. Both experimental proofs and quantum chemistry calculations reveal that the atomic structure-discriminative spin transport behavior is attributed to the distinct spin-orbit coupling (SOC) effect of MNCs.

12.
Environ Sci Pollut Res Int ; 30(12): 34978-34995, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36525198

RESUMO

The interrelationship between regional water, energy, food, and land systems is extremely complex. Hence, accurately assessing the coupling coordination relationship and identifying the influential factors of the water-energy-food-land nexus (WEFL nexus) are of utmost importance. This study proposes a novel analytical framework and evaluation index system for exploring interactions across the WEFL nexus. The comprehensive benefit evaluation index (CBEI), coupling coordination degree (CCD) model, and obstacle factor diagnosis model are integrated to assess and analyze the coupling coordination relationship and spatiotemporal dynamic evolution of the WEFL nexus in the Yangtze River Economic Belt (YREB) from 2006 to 2020. The results indicated that (1) the CBEI and CCD generally increased from 0.23 to 0.79 and 0.45 to 0.88, respectively, revealing the upward trend of the coordination development levels of the WEFL nexus in the YREB. (2) The lower reaches achieved a relatively higher coordination development degree than the upper and middle reaches of the YREB. (3) The findings of obstacle factors reveal that agricultural non-point source pollution control, waterlogging disaster prevention, industrial solid waste efficient treatment, and urban water-saving are the essential fields that need to be improved in YREB's future development. This study helps to understand the complex interrelation of the WEFL nexus at different spatial-temporal scales and provides a novel framework that can be used as an evaluation system and policy insights for a region's integrated resources, environmental management, and green sustainable development.


Assuntos
Rios , Água , China , Conservação dos Recursos Naturais , Desenvolvimento Sustentável , Desenvolvimento Econômico , Cidades
13.
Environ Monit Assess ; 194(3): 171, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147764

RESUMO

The Ili-Balkhash Basin in Central Asia is an arid endorheic basin shared by China and Kazakhstan. Population growth, socio-economic development, ecological conservation measures, and climate change have spurred land use and land cover changes and ecosystem services variations. This study used the long-term dataset from 1992 to 2018 to detect the landscape pattern evolution and its association with ecosystem services. The landscape pattern was quantified using landscape metrics, and the GeoDetector model quantified the driving factors of landscape pattern evolution. The ecosystem service value was assessed using the benefit transfer method. The time series trend was identified by the linear regression analysis combined with the Mann-Kendall algorithm, and Pearson's correlation coefficient was used to confirm the correlation. The temporal dynamics of the landscape pattern indicated the significant conversion of bare land to grassland. Cropland and urban land expanded significantly at the expense of forestland, grassland, and bare land. Various landscape elements tended to be more uniformly distributed across the basin with more regular shape and higher aggregation. The ecosystem service value increased significantly, and its correlation with the landscape pattern varied according to land use and land cover (LULC) types. The weakened shape complexity, the strengthened aggregation degree, and the more uniform distribution of different LULC types helped elevate total ecosystem service value. The results advanced the understanding of landscape pattern evolution and provided the scientific reference for land management regarding ecosystem services. Given the watershed ecosystem's integrity, transboundary cooperation between China and Kazakhstan was suggested to reinforce watershed sustainability through integrated watershed land resource planning and the joint adaptive strategies to climate change.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Monitoramento Ambiental , Florestas
14.
Front Chem ; 8: 589207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195092

RESUMO

π-Conjugated semiconductors, primarily composed of elements with low atomic number, are regarded as promising spin-transport materials due to the weak spin-orbit coupling interaction and hence long spin relaxation time. Moreover, a large number of additional functions of organic semiconductors (OSCs), such as the abundant photo-electric properties, flexibility, and tailorability, endow the organic spintronic devices more unique properties and functionalities. Particularly, the integration of the photo-electric functionality and excellent spin transport property of OSCs in a single spintronic device has even shown great potential for the realization of spin manipulation in OSCs. In this review, the application of OSCs in spintronic study will be succinctly discussed. As the most important and extensive application, the long-distance spin transport property of OSCs will be discussed first. Subsequently, several multifunctional spintronic devices based on OSCs will be summarized. After that, the organic-based magnets used for the electrodes of spintronic devices will be introduced. Finally, according to the latest progress, spin manipulation in OSCs via novel spintronic devices together with other prospects and challenges will be outlined.

15.
Am J Transl Res ; 12(5): 2007-2017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509195

RESUMO

C-type natriuretic peptide (CNP) plays a key role in female reproduction and is related to oocyte quality. This study analyzed the relationship of CNP with pregnancy outcome to provide a new indicator of pregnancy outcome. Follicular fluids were collected from 158 patients undergoing the IVF/ICSI procedure at the Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology. CNP and cGMP levels in human follicular fluids were tested by ELISA. Then, the distribution patterns of CNP and NPR-B from GV oocytes to blastocysts in mice were tested by confocal microcopy. Finally, CNP was added to the fertility or embryo development medium to observe fertility rate and the development of the embryo. CNP levels in follicular fluids from nonpregnant women were significantly higher than those in follicular fluids from pregnant women. A strong positive correlation between CNP and cGMP concentrations in human follicular fluids was observed. Both CNP and NPR-B were expressed in the plasma of cells at different stages from GV to blastocyst. CNP could increase the 2-cell rate of embryos and the rate of blastocysts when added to either fertility culture medium or embryo culture medium. In a word, CNP in human follicular fluid could predict the pregnancy outcome of IVF patients, and the mechanism of CNP in follicular fluid is related to the quality of oocyte or embryo competence and could promote the development of embryos.

16.
Front Chem ; 7: 428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275920

RESUMO

Because of the considerable advantages of functional molecules as well as supramolecules, such as the low cost, light weight, flexibility, and large area preparation via the solution method, molecular electronics has grown into an active and rapidly developing research field over the past few decades. Beyond those well-known advantages, a very long spin relaxation time of π-conjugated molecules, due to the weak spin-orbit coupling, facilitates a pioneering but fast-growing research field, known as molecular spintronics. Recently, a series of sustained progresses have been achieved with various π-conjugated molecular matrixes where spin transport is undoubtedly an important point for the spin physical process and multifunctional applications. Currently, most studies on spin transport are carried out with a molecule-based spin valve, which shows a typical geometry with a thin-film molecular layer sandwiched between two ferromagnetic electrodes. In such a device, the spin transport process has been demonstrated to have a close correlation with spin relaxation time and charge carrier mobility of π-conjugated molecules. In this review, the recent advances of spin transport in these two aspects have been systematically summarized. Particularly, spin transport in π-conjugated molecular materials, considered as promising for spintronics development, have also been highlighted, including molecular single crystal, cocrystal, solid solution as well as other highly ordered supramolecular structures.

17.
Reprod Biomed Online ; 38(3): 289-299, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30655075

RESUMO

RESEARCH QUESTION: What is the effect of C-type natriuretic peptide (CNP) on human sperm capacitation in vitro and what is the mechanism of this effect? DESIGN: CNP/NPR-B expression in the female rat genital tract was examined by immunohistochemistry and western blot assay, and then the role of CNP in human sperm capacitation was determined. The signal transduction pathway of CNP in the process was determined to elucidate the regulation mechanism of CNP by enzyme-linked immunosorbent assay and flow cytometry. RESULTS: Both CNP and NPR-B were expressed in the genital tract of female rats, especially in the mucosa epithelium cell of the oviduct; the CNP level in the rat oviduct was higher than that in the cervix. Both CNP and NPR-B level in the rat oviduct varied during the oestrus cycle, maximal expression being observed at proestrus. Furthermore, intracellular cGMP level in spermatozoa was significantly enhanced by CNP (P < 0.01). PKG activity was detected in the spermatozoa, and it can be activated by the CNP and 8-Br-cGMP (cGMP analogue). The PKG inhibitor KT5823 inhibited the effect of CNP on sperm hyperactivation and the acrosome reaction. Finally, Ca2+ and tyrosine phosphorylation levels in spermatozoa were markedly improved by CNP and 8-Br-cGMP but significantly inhibited by the addition of KT5823 (P < 0.05). CONCLUSIONS: CNP secreted by the female genital tract might bind to NPR-B on the spermatozoa. It successively stimulated intracellular cGMP/PKG signalling, increased Ca2+ and tyrosine-phosphorylated proteins, promoted hyperactivation and induced the acrosome reaction, which ultimately facilitated sperm capacitation.


Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Transdução de Sinais/fisiologia , Capacitação Espermática/fisiologia , Animais , Colo do Útero/metabolismo , Feminino , Humanos , Masculino , Oviductos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/metabolismo , Espermatozoides/metabolismo , Tirosina/metabolismo
18.
Adv Mater ; 31(45): e1805355, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30680807

RESUMO

The field of spintronics has triggered an enormous revolution in information storage since the first observation of giant magnetoresistance (GMR). Molecular semiconductors are characterized by having very long spin relaxation times up to milliseconds, and are thus widely considered to hold immense potential for spintronic applications. Along with the development of molecular spintronics, it is clear that the study of multipurpose spintronic devices has gradually grown into a new research and development direction. The abundant photoelectric properties of molecular semiconductors and the intriguing functionality of the spinterface, together with novel designs of device structures, have promoted the integration of multiple functions and different mechanisms into discrete spintronic devices. Here, according to the different relationships between the integrated mechanisms, multifunctional molecular spintronic devices containing parallel and interactive types are highlighted. This is followed by the introduction of pure-spin-current-type molecular spintronic devices that have already demonstrated great potential for multifunction exploration. Finally, the challenges and outlook that make this field young and energetic are outlined.

19.
Artigo em Inglês | MEDLINE | ID: mdl-30469345

RESUMO

Impacted by ongoing climate change and anthropogenic activities, large seasonal lakes experience water regime evolution, which raises challenges for the management of water resources and environment. The water regime evolution refers to the spatial and temporal alterations in the hydrological features of lakes. Characterizing the lake water regime and its alteration may help policymakers design effective adaption strategies. Therefore, total 47 hydrological indicators were proposed, considering intra-annual fluctuations, flood and drought features, and rate and frequency of water level variations. Combined with Mann-Kendall algorithm and Sen's slope, the indicators were applied in Poyang Lake, a typically large seasonal lake in China, as a case study. The results revealed temporal and spatial variations in different hydrological indicators. The most dramatic alteration was the water level decline in October and November over the entire study phase, especially over the past 30 years. This was an urgent environmental problem that Poyang Lake faced, partially caused by the increased hydraulic gradient between southern and northern lake. It could trigger the drought occurring earlier, prolong the drought duration, and impair the wetland ecosystem. Environmental water requirements of both Poyang Lake and Yangtze River were suggested for regional sustainable development. The application in Poyang Lake showed the practicability and reliability of the indicators, which are applicable in international seasonal lakes. The series of indicators can be used in whole or in part, determined by the ecohydrological characters of a specific lake and the research objectives.


Assuntos
Monitoramento Ambiental/métodos , Lagos , Estações do Ano , China , Mudança Climática , Ecossistema , Água Doce , Hidrologia , Reprodutibilidade dos Testes
20.
Environ Monit Assess ; 190(8): 453, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29982885

RESUMO

Hydrologic regimes are essential to riverine, lacustrine, and wetland ecosystems, and every component of a hydrologic regime has a specific ecological environmental function. In an outflow lake-river system, water levels are reduced by a reservoir constructed at the river, which interferes with the river-lake interrelationships by impairing the river's blocking effect. This increases the lake-river hydraulic gradient and accelerates the lake's drainage to the river, resulting in shrinkage of the lake and damaging environmental issues. To respond to these issues, we propose an environmental flow assessment that considers the river's blocking effect on the lake. This novel methodology consists of four steps: data preparation, assessment of the lake's environmental water level, assessment of the river's environmental water level, and environmental flow assessment. We estimated the river's environmental water level through a hydraulic correlation between the lake and the river, and found that the river's blocking effect could be sustained. The Yangtze-Poyang system was selected as a case study to illustrate the methodology's procedures and applicability. The impoundment of the Three Gorges Reservoir, during the fall retreating season, decreased the Yangtze's water level and weakened the Yangtze's blocking effect on Poyang Lake. Poyang Lake's environmental water level, which ranges from 11.71 to 15.81 m in the month of October, was used to estimate the Yangtze's environmental water level as falling in a range of 11.95 to 16.17 m, which corresponds to an environmental flow range of 16,822 to 32,371 m3/s. This study offers a solution for reservoir-induced accelerated lake drainage, which may be helpful in mitigating the negative impacts of reservoirs and sustaining natural rive-lake interactions.


Assuntos
Monitoramento Ambiental , Hidrologia , Lagos/química , Rios/química , China , Ecossistema , Estações do Ano , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...