Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ophthalmology ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416081
3.
Nat Chem Biol ; 18(7): 742-750, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35637351

RESUMO

Biological signal recording enables the study of molecular inputs experienced throughout cellular history. However, current methods are limited in their ability to scale up beyond a single signal in mammalian contexts. Here, we develop an approach using a hyper-efficient dCas12a base editor for multi-signal parallel recording in human cells. We link signals of interest to expression of guide RNAs to catalyze specific nucleotide conversions as a permanent record, enabled by Cas12's guide-processing abilities. We show this approach is plug-and-play with diverse biologically relevant inputs and extend it for more sophisticated applications, including recording of time-delimited events and history of chimeric antigen receptor T cells' antigen exposure. We also demonstrate efficient recording of up to four signals in parallel on an endogenous safe-harbor locus. This work provides a versatile platform for scalable recording of signals of interest for a variety of biological applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Animais , Edição de Genes , Humanos , Mamíferos , RNA Guia de Cinetoplastídeos/genética
4.
Nat Cell Biol ; 24(4): 590-600, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414015

RESUMO

Multiplexed modulation of endogenous genes is crucial for sophisticated gene therapy and cell engineering. CRISPR-Cas12a systems enable versatile multiple-genomic-loci targeting by processing numerous CRISPR RNAs (crRNAs) from a single transcript; however, their low efficiency has hindered in vivo applications. Through structure-guided protein engineering, we developed a hyper-efficient Lachnospiraceae bacterium Cas12a variant, termed hyperCas12a, with its catalytically dead version hyperdCas12a showing significantly enhanced efficacy for gene activation, particularly at low concentrations of crRNA. We demonstrate that hyperdCas12a has comparable off-target effects compared with the wild-type system and exhibits enhanced activity for gene editing and repression. Delivery of the hyperdCas12a activator and a single crRNA array simultaneously activating the endogenous Oct4, Sox2 and Klf4 genes in the retina of post-natal mice alters the differentiation of retinal progenitor cells. The hyperCas12a system offers a versatile in vivo tool for a broad range of gene-modulation and gene-therapy applications.


Assuntos
Proteínas Associadas a CRISPR , Animais , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Camundongos , RNA/metabolismo
6.
Dev Cell ; 47(3): 348-362.e7, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30293838

RESUMO

Centromeric chromatin defines the site of kinetochore formation and ensures faithful chromosome segregation. Centromeric identity is epigenetically specified by the incorporation of CENP-A nucleosomes. DNA replication presents a challenge for inheritance of centromeric identity because nucleosomes are removed to allow for replication fork progression. Despite this challenge, CENP-A nucleosomes are stably retained through S phase. We used BioID to identify proteins transiently associated with CENP-A during DNA replication. We found that during S phase, HJURP transiently associates with centromeres and binds to pre-existing CENP-A, suggesting a distinct role for HJURP in CENP-A retention. We demonstrate that HJURP is required for centromeric nucleosome inheritance during S phase. HJURP co-purifies with the MCM2-7 helicase complex and, together with the MCM2 subunit, binds CENP-A simultaneously. Therefore, pre-existing CENP-A nucleosomes require an S phase function of the HJURP chaperone and interaction with MCM2 to ensure faithful inheritance of centromere identity through DNA replication.


Assuntos
Proteína Centromérica A/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Replicação do DNA , Proteínas de Ligação a DNA/genética , Epigenômica , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Mitose/fisiologia , Nucleossomos/genética , Fase S
7.
Nat Commun ; 8: 15775, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598437

RESUMO

Maintaining centromere identity relies upon the persistence of the epigenetic mark provided by the histone H3 variant, centromere protein A (CENP-A), but the molecular mechanisms that underlie its remarkable stability remain unclear. Here, we define the contributions of each of the three candidate CENP-A nucleosome-binding domains (two on CENP-C and one on CENP-N) to CENP-A stability using gene replacement and rapid protein degradation. Surprisingly, the most conserved domain, the CENP-C motif, is dispensable. Instead, the stability is conferred by the unfolded central domain of CENP-C and the folded N-terminal domain of CENP-N that becomes rigidified 1,000-fold upon crossbridging CENP-A and its adjacent nucleosomal DNA. Disrupting the 'arginine anchor' on CENP-C for the nucleosomal acidic patch disrupts the CENP-A nucleosome structural transition and removes CENP-A nucleosomes from centromeres. CENP-A nucleosome retention at centromeres requires a core centromeric nucleosome complex where CENP-C clamps down a stable nucleosome conformation and CENP-N fastens CENP-A to the DNA.


Assuntos
Arginina/metabolismo , Proteína Centromérica A/metabolismo , Centrômero/metabolismo , DNA/metabolismo , Nucleossomos/metabolismo , Animais , Centrômero/química , Centrômero/genética , Proteína Centromérica A/química , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , Feminino , Humanos , Masculino , Camundongos , Nucleossomos/química , Nucleossomos/genética , Ligação Proteica , Domínios Proteicos
8.
Mol Cell ; 65(2): 231-246, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28017591

RESUMO

Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell-cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, that mediated specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Autoantígenos/genética , Proteína Quinase CDC2 , Centrômero/genética , Proteína Centromérica A , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutação , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Transfecção
9.
Mol Cell ; 60(6): 886-98, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26698661

RESUMO

During mitosis, the macromolecular kinetochore complex assembles on the centromere to orchestrate chromosome segregation. The properties and architecture of the 16-subunit Constitutive Centromere-Associated Network (CCAN) that allow it to build a robust platform for kinetochore assembly are poorly understood. Here, we use inducible CRISPR knockouts and biochemical reconstitutions to define the interactions between the human CCAN proteins. We find that the CCAN does not assemble as a linear hierarchy, and instead, each sub-complex requires multiple non-redundant interactions for its localization to centromeres and the structural integrity of the overall assembly. We demonstrate that the CENP-L-N complex plays a crucial role at the core of this assembly through interactions with CENP-C and CENP-H-I-K-M. Finally, we show that the CCAN is remodeled over the cell cycle such that sub-complexes depend on their interactions differentially. Thus, an interdependent meshwork within the CCAN underlies the centromere specificity and stability of the kinetochore.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Células HeLa , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
10.
Science ; 348(6235): 699-703, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25954010

RESUMO

Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Nucleossomos/metabolismo , Autoantígenos/química , Autoantígenos/genética , Centrômero/química , Centrômero/ultraestrutura , Proteína Centromérica A , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/química , DNA/metabolismo , Epigênese Genética , Transferência Ressonante de Energia de Fluorescência , Técnicas de Silenciamento de Genes , Humanos , Nucleossomos/química , Nucleossomos/ultraestrutura , Estrutura Secundária de Proteína
11.
J Cell Biol ; 208(5): 521-31, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25713413

RESUMO

The centromere-defined by the presence of nucleosomes containing the histone H3 variant, CENP-A-is the chromosomal locus required for the accurate segregation of chromosomes during cell division. Although the sequence determinants of human CENP-A required to maintain a centromere were reported, those that are required for early steps in establishing a new centromere are unknown. In this paper, we used gain-of-function histone H3 chimeras containing various regions unique to CENP-A to investigate early events in centromere establishment. We targeted histone H3 chimeras to chromosomally integrated Lac operator sequences by fusing each of the chimeras to the Lac repressor. Using this approach, we found surprising contributions from a small portion of the N-terminal tail and the CENP-A targeting domain in the initial recruitment of two essential constitutive centromere proteins, CENP-C and CENP-T. Our results indicate that the regions of CENP-A required for early events in centromere establishment differ from those that are required for maintaining centromere identity.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Autoantígenos/genética , Linhagem Celular Tumoral , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Histonas/genética , Humanos , Estrutura Terciária de Proteína
12.
Exp Eye Res ; 129: 31-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456519

RESUMO

Age-related macular degeneration (AMD) is the most common cause of blindness among older adults in developed countries, and retinal iron accumulation may exacerbate the disease. Iron can upregulate the production of amyloid precursor protein (APP). Since amyloid-ß (Aß), a byproduct of APP proteolysis, is found in drusen, the histopathological hallmark of AMD, we tested the role of iron in regulating APP and Aß levels in the retinal pigment epithelial cell line ARPE-19. We found that treatment with ferric ammonium citrate (FAC) increases APP at the translational level. FAC treatment also results in increased generation of APP C-terminal fragments C83 and C99, the products of APP proteolysis by α- and ß-secretase, respectively, as well as levels of Aß42, a highly aggregative amyloid species. Additionally, retinal tissue sections from a patient with aceruloplasminemia, a disease causing iron overload in the retinal pigment epithelium (RPE), showed increased Aß deposition in the RPE and drusen. Overall, our results suggest that RPE iron overload could contribute to Aß accumulation in the retina.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Regulação da Expressão Gênica , Ferro/metabolismo , Degeneração Macular/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Epitélio Pigmentado da Retina/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/patologia
13.
Yale J Biol Med ; 85(1): 37-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22461742

RESUMO

For most patients with type I diabetes, insulin therapy and glucose monitoring are sufficient to maintain glycemic control. However, hypoglycemia is a potentially lethal side effect of insulin treatment in patients who are glycemically labile or have hypoglycemia-associated autonomic failure [1]. For those patients, an alternative therapy is beta cell replacement via pancreas or islet transplantation. Pancreas transplants using cadaveric donor organs reduce insulin dependence but carry risks involved in major surgery and chronic immunosuppression. Islet transplantation, in which islets are isolated from donor pancreases and intravenously infused, require no surgery and can utilize islets isolated from pancreases unsuitable for whole organ transplantation. However, islet transplantation also requires immunosuppression, and standard steroid regimens may be toxic to beta cells [2]. The 2000 Edmonton Trial demonstrated the first long-term successful islet transplantation by using a glucocorticoid-free immunosuppressive regimen (sirolimus and tacrolimus). The Clinical Islet Transplantation (CIT) Consortium seeks to improve upon the Edmonton Protocol by using anti-thymocyte globulin (ATG) and TNFα antagonist (etanercept). The trials currently in progress, in addition to research efforts to find new sources of islet cells, reflect enormous potential for islet transplantation in treatment of type I diabetes.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Insulina/uso terapêutico , Transplante de Pâncreas
14.
J Biol Chem ; 285(15): 11378-91, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20145246

RESUMO

Gamma-secretase is a ubiquitous, multiprotein enzyme composed of presenilin, nicastrin, Aph-1, and Pen-2. It mediates the intramembrane proteolysis of many type 1 proteins, plays an essential role in numerous signaling pathways, and helps drive the pathogenesis of Alzheimer disease by excising the hydrophobic, aggregation-prone amyloid beta-peptide from the beta-amyloid precursor protein. A central unresolved question is how its many substrates bind and enter the gamma-secretase complex. Here, we provide evidence that both the beta-amyloid precursor protein holoprotein and its C-terminal fragments, the immediate substrates of gamma-secretase, can associate with Aph-1 at overexpressed as well as endogenous protein levels. This association was observed using bi-directional co-immunoprecipitation in multiple systems and detergent conditions, and an beta-amyloid precursor protein-Aph-1 complex was specifically isolated following in situ cross-linking in living cells. In addition, another endogenous canonical gamma-substrate, Jagged, showed association of both its full-length and C-terminal fragment forms with Aph-1. We were also able to demonstrate that this interaction with substrates was conserved across the multiple isoforms of Aph-1 (beta, alphaS, and alphaL), as they were all able to bind beta-amyloid precursor protein with similar affinity. Finally, two highly conserved intramembrane histidines (His-171 and His-197) within Aph-1, which were recently shown to be important for gamma-secretase activity, are required for efficient binding of substrates. Taken together, our data suggest a dominant role for Aph-1 in interacting with gamma-secretase substrates prior to their processing by the proteolytic complex.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Proteínas de Membrana/metabolismo , Peptídeos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/química , Animais , Células CHO , Cricetinae , Cricetulus , Endopeptidases , Histidina/química , Humanos , Lentivirus/metabolismo , Camundongos , Peptídeo Hidrolases , Presenilinas/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...