Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 539: 111473, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610358

RESUMO

High concentrations of free fatty acids (FFAs) or lipopolysaccharide (LPS) could lead to ß-cell apoptosis and dysfunction, while low-grade elevation of FFAs or LPS, which are more common in people with type 2 diabetes mellitus (T2DM) or obesity, have no obvious toxic effect on ß-cells. Palmitate is a component closely related to metabolic disorders in FFAs. Recent studies have found that low-grade elevation of palmitate and LPS synergistically affects the sphingolipid signaling pathway by activating Toll-like receptor 4 (TLR4) and further enhances the expression of inflammatory cytokines in immune cells. Previous studies demonstrated that sphingolipids also played an important role in the occurrence and development of T2DM. This study aimed to investigate the synergistic effects of low-grade elevation of palmitate and LPS on viability, apoptosis and insulin secretion in the rat pancreatic ß-cell line INS-1 or islets and the role of sphingolipids in this process. We showed that low-grade elevation of palmitate or LPS alone did not affect the viability, apoptosis, glucose-stimulated insulin secretion (GSIS) or intracellular insulin content of INS-1 cells or islets, while the combination of the two synergistically inhibited cell viability, induced apoptosis and decreased basal insulin secretion in INS-1 cells or islets. Treatment with palmitate and LPS markedly upregulated TLR4 protein expression and downregulated neutral ceramidase (NCDase) activity and protein expression. Additionally, low-grade elevation of palmitate and LPS synergistically induced a significant increase in ceramide and a decrease in sphingosine-1-phosphate. Blocking TLR4 signaling or overexpressing NCDase remarkably attenuated INS-1 cell injury induced by the combination of palmitate and LPS. However, inhibition of ceramide synthase did not ameliorate injury induced by palmitate and LPS. Overall, we show for the first time that low-grade elevation of palmitate and LPS synergistically induced ß-cell damage by activating TLR4 signaling, inhibiting NCDase activity, and further modulating sphingolipid metabolism, which was different from a high concentration of palmitate-induced ß-cell injury by promoting ceramide synthesis.


Assuntos
Células Secretoras de Insulina/citologia , Lipopolissacarídeos/efeitos adversos , Ceramidase Neutra/metabolismo , Palmitatos/efeitos adversos , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose , Linhagem Celular , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo
2.
Bioorg Med Chem ; 14(18): 6189-96, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16782349

RESUMO

Antibodies that catalyze the deprotonation of unactivated benzisoxazoles to give the corresponding salicylonitriles were prepared using as antigen a 2-aminobenzimidazolium derivative coupled to a carrier protein via its benzene ring. The hapten was designed to induce an antibody binding site with both a base and an acid, in position to initiate proton transfer and stabilize developing negative charge at the phenoxide leaving group, respectively. Consistent with this design, the catalysts exhibit bell-shaped pH-rate profiles, while chemical modification identified several functional groups that could participate in bifunctional catalysis. One of the antibodies, 13G5, is particularly notable in catalyzing the elimination of 6-glutaramidebenzisoxazole with a > 10(5)-fold rate acceleration over background and an effective molarity of > 10(4) M for its catalytic base. These properties compare favorably to the efficiencies achieved by the best previously characterized antibodies with substantially more reactive substrates.


Assuntos
Anticorpos Catalíticos/química , Haptenos/química , Tireoglobulina/química , Anticorpos Catalíticos/biossíntese , Benzimidazóis/síntese química , Benzimidazóis/química , Sítios de Ligação , Catálise , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Relação Estrutura-Atividade , Tireoglobulina/síntese química , Tireoglobulina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...