Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124315

RESUMO

Pressure sensors prepared from sapphire exhibit excellent characteristics, including high-temperature resistance, high hardness, and resistance to electromagnetic interference. A Fast Fourier Transform and Mean Square Error (FFT-MSE) demodulation algorithm was employed to demodulate a sapphire sandwich-structure Fabry-Perot (F-P) pressure sensor. Through simulation analysis, the experimental results indicated that the demodulation error of the air cavity length in the range of 206 µm to 216 µm was less than 0.0008%. Compared to single demodulation methods and combined demodulation methods based on FFT or Minimum Mean Square Error (MMSE), the method proposed in this work reduced the demodulation error by more than three times and increased accuracy by more than six times. The algorithm was utilized to demodulate the sapphire sandwich-structure F-P pressure sensor, and the test results indicated that the fitting error of the sensor was less than 0.025% within the pressure range of 0 MPa to 10 MPa. The repeatability error was less than 0.066%, the zero-point deviation was 1.26%, and the maximum stability deviation was 0.0063% per 30 min. The algorithm effectively demodulated the actual cavity length variation in the sapphire sandwich-structure F-P pressure sensor, providing a solution for the performance evaluation of the sapphire sandwich-structure F-P pressure sensor.

2.
Sensors (Basel) ; 24(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39205007

RESUMO

F-P (Fabry-Perot) pressure sensors have a wide range of potential applications in high-temperature, high-pressure, and high-dynamic environments. However, existing demodulation methods commonly rely on spectrometers, which limits their application to high-frequency pressure signal acquisition. To solve this problem, this study developed a self-compensated, three-wavelength demodulation system composite with an F-P pressure sensor and a thermocouple to construct a comprehensive sensing system. The system produces accurate pressure measurements in high-temperature, high-pressure, and high-dynamic environments. In static testing at room temperature, the sensing system shows excellent linearity, and the pressure sensitivity is 158.48 nm/MPa. In high-temperature testing, the sensing system maintains high linearity in the range of 100 °C to 700 °C, with a maximum pressure-indication error of about 0.13 MPa (0~5 MPa). In dynamic testing, the sensor exhibits good response characteristics at 1000 Hz and 5000 Hz sinusoidal pressure frequencies, with a signal-to-noise ratio (SNR) greater than 37 dB and 45 dB, respectively. These results indicate that the sensing system proposed in this study has significant competitive advantages in the field of high-temperature, high-speed, and high-precision pressure measurements and provides an important experimental basis and theoretical support for technological progress in related fields.

3.
Micromachines (Basel) ; 15(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38398904

RESUMO

In the field of in situ measurement of high-temperature pressure, fiber-optic Fabry-Perot pressure sensors have been extensively studied and applied in recent years thanks to their compact size and excellent anti-interference and anti-shock capabilities. However, such sensors have high technological difficulty, limited pressure measurement range, and low sensitivity. This paper proposes a fiber-optic Fabry-Perot pressure sensor based on a membrane-hole-base structure. The sensitive core was fabricated by laser cutting technology and direct bonding technology of three-layer sapphire and develops a supporting large-cavity-length demodulation algorithm for the sensor's Fabry-Perot cavity. The sensor exhibits enhanced sensitivity, a simplified structure, convenient preparation procedures, as well as improved pressure resistance and anti-harsh environment capabilities, and has large-range pressure sensing capability of 0-10 MPa in the temperature range of 20-370 °C. The sensor sensitivity is 918.9 nm/MPa, the temperature coefficient is 0.0695 nm/(MPa∙°C), and the error over the full temperature range is better than 2.312%.

4.
Micromachines (Basel) ; 14(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630157

RESUMO

Current methods for thin film sensors preparation include screen printing, inkjet printing, and MEMS (microelectromechanical systems) techniques. However, their limitations in achieving sub-10 µm line widths hinder high-density sensors array fabrication. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 µm width. In this paper, we innovatively proposed a method using only EHD printing to prepare ultra-micro thin film temperature sensors array. The sensitive layer of the four sensors was compactly integrated within an area measuring 450 µm × 450 µm, featuring a line width of less than 10 µm, and a film thickness ranging from 150 nm to 230 nm. The conductive network of silver nanoparticles exhibited a porosity of 0.86%. After a 17 h temperature-resistance test, significant differences in the performance of the four sensors were observed. Sensor 3 showcased relatively superior performance, boasting a fitted linearity of 0.99994 and a TCR of 937.8 ppm/°C within the temperature range of 20 °C to 120 °C. Moreover, after the 17 h test, a resistance change rate of 0.17% was recorded at 20 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA