Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Ethnopharmacol ; : 118356, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763372

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY: Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS: Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS: H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96%-49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS: This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.

2.
Nano Lett ; 24(13): 3914-3921, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513214

RESUMO

Establishing a multivalent interface between the biointerface of a living system and electronic device is vital to building intelligent bioelectronic systems. How to achieve multivalent binding with spatial tolerance at the nanoscale remains challenging. Here, we report an antibody nanotweezer that is a self-adaptive bivalent nanobody enabling strong and resilient binding between transistor and envelope proteins at biointerfaces. The antibody nanotweezer is constructed by a DNA framework, where the nanoscale patterning of nanobodies along with their local spatial adaptivity enables simultaneous recognition of target epitopes without binding stress. As such, effective binding affinity increases by 1 order of magnitude compared with monovalent antibody. The antibody nanotweezer operating on transistor offers enhanced signal transduction, which is implemented to detect clinical pathogens, showing ∼100% overall agreement with PCR results. This work provides a perspective of engineering multivalent interfaces between biosystems with solid-state devices, holding great potential for organoid intelligence on a chip.


Assuntos
Anticorpos de Domínio Único , Epitopos , Transdução de Sinais
3.
Adv Mater ; 36(15): e2312540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288781

RESUMO

On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Humanos , Microfluídica , Biomarcadores
4.
J Microbiol Immunol Infect ; 57(1): 128-137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951801

RESUMO

BACKGROUND: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP) triggered a significant public health challenge. This study explored the prevalence trends and key genetic characteristics of Hv-CRKP in one Shanghai suburbs hospital during 2014-2018. METHODS: During five years, Hv-CRKP strains identified from 2579 CRKP by specific PCR, were subjected to performed short- and long-read sequencing technology; epidemiological characteristics, antimicrobial-resistance genes (ARGs), virulence determinants, detailed plasmid profiles and conjugation efficiency were comprehensively investigated. RESULTS: 155 Hv-CRKP and 31 non-Hv-CRKP strains were sequenced. Hv-CRKP strains exhibited significant resistance to six common antibiotic classes (>92%). ST11 steadily increased and became the most prevalent ST (85.2%), followed by ST15 (8.5%), ST65 (2.6%), ST23 (1.9%), and ST86 (0.6%). ST11-KL64 (65.2%) rapidly increased from 0 in 2014 to 93.9% in 2018. blaKPC-2 was the primary carbapenemase gene (97.4%). Other ARGs switched from aac(3)-IId to aadA2 in aminoglycoside and from sul1 to sul2 in sulfanilamide. The time-dated phylogenetic tree was divided into four independent evolutionary clades. Clade 1 and 3 strains were mostly limited in the ICU, whereas Clade 2 strains were distributed among multiple departments. Compared to ybt14 in ICEKp12 in Clade 1, Clade 3 strains harbored ybt9 in ICEKp3 and blaCTX-M-65. Hv-CRKP infected more wards than non-Hv-CRKP and showed greater transmission capacity. Three plasmids containing crucial carbapenemase genes demonstrated their early transmission across China. CONCLUSION: The Hv-CRKP ST11-KL64 has rapidly replaced ST11-KL47 and emerged as the predominant epidemic subtype in various hospital wards, highlighting the importance of conducting comprehensive early surveillance for Hv-CRKP, especially in respiratory infections.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Filogenia , China/epidemiologia , Antibacterianos/farmacologia , Hospitais , Genômica , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Infecções por Klebsiella/epidemiologia
5.
Adv Mater ; 36(5): e2307366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37805919

RESUMO

"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nucleotídeos , Proteínas Argonautas , DNA/genética , MicroRNAs/genética , Sondas de DNA
6.
Phytochem Anal ; 35(2): 239-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779216

RESUMO

INTRODUCTION: Scutellaria baicalensis Georgi, a traditional Chinese medicine, is widely applied to treat various diseases among people, especially in East Asia. However, the specific active compounds in S. baicalensis aqueous extracts (SBAEs) responsible for the hypoglycemic and hypolipidemic properties as well as their potential mechanisms of action remain unclear. OBJECTIVES: This work aimed to explore the potential hypoglycemic and hypolipidemic compounds from SBAE and their potential mechanisms of action. METHODOLOGY: The in vitro inhibitory tests against lipase and α-glucosidase, and the effects of SBAE on glucose consumption and total triglyceride content in HepG2 cells were first performed to evaluate the hypoglycemic and hypolipidemic effects. Then, affinity ultrafiltration liquid chromatography-mass spectrometry (LC-MS) screening strategy with five drug targets, including α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B), lipase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was developed to screen out the potential active constituents from SBAE, and some representative active compounds were further validated. RESULTS: SBAE displayed noteworthy hypoglycemic and hypolipidemic properties, and 4, 10, 4, 8, and 8 potential bioactive components against α-amylase, α-glucosidase, PTP1B, HMGCR, and lipase were initially screened out, respectively. The interaction network was thus constructed between the potential bioactive compounds screened out and their corresponding drug targets. Among them, baicalein, wogonin, and wogonoside were revealed to possess remarkable hypoglycemic and hypolipidemic effects. CONCLUSION: The potential hypolipidemic and hypoglycemic bioactive compounds in SBAE and their mode of action were initially explored through ligand-target interactions by combining affinity ultrafiltration LC-MS strategy with five drug targets.


Assuntos
Scutellaria baicalensis , Ultrafiltração , Humanos , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Lipase , alfa-Amilases
7.
Phytochem Anal ; 35(1): 28-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37571866

RESUMO

INTRODUCTION: Numerous species of the Euphorbiaceae family, including Euphorbia maculata, Euphorbia humifusa, and Acalypha australis, have been used to manage bleeding disorders. However, few investigations have demonstrated their hemostatic potential, and their procoagulant compounds remain elusive. OBJECTIVE: This study aimed to determine the most active procoagulant extracts from the three species' crude extract (CE) and fractions in order to screen out the active compounds and to analyze their possible mechanisms of action. METHODS: An integrative approach, comprising prothrombin time and activated partial thromboplastin time evaluations and urokinase-type plasminogen activator (uPA) inhibitory assessment, followed by bio-affinity ultrafiltration paired with UPLC/QTOF-MS targeting uPA and docking simulations, was used. RESULTS: The extracts with highest procoagulant activity were the CE for both E. maculata (EMCE) and E. humifusa (EHCE) and the n-butanol fraction (NB) for A. australis (AANB). The most promising ligands, namely, isoquercetin, orientin, rutin, and brevifolin carboxylic acid, were selected from these lead extracts. All of these compounds exhibited pronounced specific binding values to the uPA target and showed tight intercalation with the crucial side chains forming the uPA active pocket, which may explain their mode of action. The activity validation substantiated their hemostatic effectivity in inhibiting uPA as they had better inhibition constant (Ki) values than the reference drug tranexamic acid. CONCLUSION: Collectively, the integrative strategy applied to these three species allowed the elucidation of the mechanisms underlying their therapeutic effects on bleeding disorders, resulting in the fast detection of four potential hemostatic compounds and their mode of action.


Assuntos
Acalypha , Euphorbia , Euphorbiaceae , Hemostáticos , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Euphorbiaceae/química , Ultrafiltração , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem
8.
Front Pharmacol ; 14: 1298049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027025

RESUMO

Rodgersia podophylla A. Gray (R. podophylla) is a traditional Chinese medicine with various pharmacological effects. However, its antioxidant and anti-hyperuricemia components and mechanisms of action have not been explored yet. In this study, we first assessed the antioxidant potential of R. podophylla with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power (FRAP) assays. The results suggested that the ethyl acetate (EA) fraction of R. podophylla not only exhibited the strongest DPPH, ABTS radical scavenging and ferric-reducing activities, but also possessed the highest total phenolic and total flavonoid contents among the five fractions. After that, the potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from the EA fraction were quickly screened and identified through the bio-affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS). Accordingly, norbergenin, catechin, procyanidin B2, 4-O-galloylbergenin, 11-O-galloylbergenin, and gallic acid were considered to be potential SOD ligands, while gallic acid, 11-O-galloylbergenin, catechin, bergenin, and procyanidin B2 were recognized as potential XOD ligands, respectively. Moreover, these six ligands effectively interacted with SOD in molecular docking simulation, with binding energies (BEs) ranging from -6.85 to -4.67 kcal/mol, and the inhibition constants (Ki) from 9.51 to 379.44 µM, which were better than the positive controls. Particularly, catechin exhibited a robust binding affinity towards XOD, with a BE value of -8.54 kcal/mol and Ki value of 0.55 µM, which surpassed the positive controls. In conclusion, our study revealed that R. podophylla possessed remarkable antioxidant and anti-hyperuricemia activities and that the UF-LC-MS method is suitable for screening potential ligands for SOD and XOD from medicinal plants.

9.
BMC Microbiol ; 23(1): 338, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957579

RESUMO

Ventilator-associated pneumonia (VAP) and pyogenic liver abscess (PLA) due to Klebsiella pneumoniae infection can trigger life-threatening malignant consequences, however, there are few studies on the strain-associated clinical pathogenic mechanisms between VAP and PLA. A total of 266 patients consist of 129 VAP and 137 PLA were included for analysis in this study. We conducted a comprehensive survey for the two groups of K. pneumoniae isolates, including phenotypic experiments, clinical epidemiology, genomic analysis, and instrumental analysis, i.e., to obtain the genomic differential profile of K. pneumoniae strains responsible for two distinct infection outcomes. We found that PLA group had a propensity for specific underlying diseases, especially diabetes and cholelithiasis. The resistance level of VAP was significantly higher than that of PLA (78.57% vs. 36%, P < 0.001), while the virulence results were opposite. There were also some differences in key signaling pathways of biochemical processes between the two groups. The combination of iucA, rmpA, hypermucoviscous phenotype, and ST23 presented in K. pneumoniae infection is more important and highly prudent for timely treatment. The present study may contribute a benchmark for the K. pneumoniae clinical screening, epidemiological surveillance, and effective therapeutic strategies.


Assuntos
Infecções por Klebsiella , Abscesso Hepático , Pneumonia Associada à Ventilação Mecânica , Humanos , Klebsiella pneumoniae , Fatores de Virulência/genética , Tipagem de Sequências Multilocus , Fenótipo , Infecções por Klebsiella/epidemiologia
10.
Biochem Biophys Res Commun ; 668: 90-95, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37245294

RESUMO

Antimicrobial resistance (AMR) crisis urges the development of new antibiotics. In the present work, we for the first time used bio-affinity ultrafiltration combined with HPLC-MS (UF-HPLC-MS) to examine the interaction between the outer membrane ß-barrel proteins and natural products. Our results showed that natural product licochalcone A from licorice interacts with BamA and BamD with the enrichment factor of 6.38 ± 1.46 and 4.80 ± 1.23, respectively. The interaction was further confirmed by use of biacore analysis, which demonstrated that the Kd value between BamA/D and licochalcone was 6.63/28.27 µM, suggesting a good affinity. To examine the effect of licochalcone A on BamA/D function, the developed versatile in vitro reconstitution assay was used and the results showed that 128 µg/mL licochalcone A could reduce the outer membrane protein A integration efficiency to 20%. Although licochalcone A alone can not inhibit the growth of E. coli, but it can affect the membrane permeability, suggesting that licochalcone A holds the potential to be used as a sensitizer to combat AMR.


Assuntos
Chalconas , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chalconas/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Dobramento de Proteína
11.
Food Chem ; 418: 135950, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36989642

RESUMO

In recent years, microbial volatile organic compounds (mVOCs) produced by microbial metabolism have attracted more and more attention because they can be used to detect food early contamination and flaws. So far, many analytical methods have been reported for the determination of mVOCs in food, but few integrated review articles discussing these methods are published. Consequently, mVOCs as indicators of food microbiological contamination and their generation mechanism including carbohydrate, amino acid, and fatty acid metabolism are introduced. Meanwhile, a detailed summary of the mVOCs sampling methods such as headspace, purge trap, solid phase microextraction, and needle trap is presented, and a systematic and critical review of the analytical methods (ion mobility spectrometry, electronic nose, biosensor, and so on) of mVOCs and their application in the detection of food microbial contamination is highlighted. Finally, the future concepts that can help improve the detection of food mVOCs are prospected.


Assuntos
Compostos Orgânicos Voláteis , Aminoácidos , Nariz Eletrônico , Espectrometria de Mobilidade Iônica , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Microbiologia de Alimentos
12.
Front Med ; 17(3): 562-575, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949347

RESUMO

The Omicron family of SARS-CoV-2 variants are currently driving the COVID-19 pandemic. Here we analyzed the clinical laboratory test results of 9911 Omicron BA.2.2 sublineages-infected symptomatic patients without earlier infection histories during a SARS-CoV-2 outbreak in Shanghai in spring 2022. Compared to an earlier patient cohort infected by SARS-CoV-2 prototype strains in 2020, BA.2.2 infection led to distinct fluctuations of pathophysiological markers in the peripheral blood. In particular, severe/critical cases of COVID-19 post BA.2.2 infection were associated with less pro-inflammatory macrophage activation and stronger interferon alpha response in the bronchoalveolar microenvironment. Importantly, the abnormal biomarkers were significantly subdued in individuals who had been immunized by 2 or 3 doses of SARS-CoV-2 prototype-inactivated vaccines, supporting the estimation of an overall 96.02% of protection rate against severe/critical disease in the 4854 cases in our BA.2.2 patient cohort with traceable vaccination records. Furthermore, even though age was a critical risk factor of the severity of COVID-19 post BA.2.2 infection, vaccination-elicited protection against severe/critical COVID-19 reached 90.15% in patients aged ≽ 60 years old. Together, our study delineates the pathophysiological features of Omicron BA.2.2 sublineages and demonstrates significant protection conferred by prior prototype-based inactivated vaccines.


Assuntos
COVID-19 , Humanos , Idoso , Pessoa de Meia-Idade , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , China/epidemiologia , Surtos de Doenças/prevenção & controle , Vacinação
13.
Pharmaceutics ; 15(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840021

RESUMO

The global increase and prevalence of inflammatory-mediated diseases have been a great menace to human welfare. Several works have demonstrated the anti-inflammatory potentials of natural polyphenolic compounds, including flavonoid derivatives (EGCG, rutin, apigenin, naringenin) and phenolic acids (GA, CA, etc.), among others (resveratrol, curcumin, etc.). In order to improve the stability and bioavailability of these natural polyphenolic compounds, their recent loading applications in both organic (liposomes, micelles, dendrimers, etc.) and inorganic (mesoporous silica, heavy metals, etc.) nanocarrier technologies are being employed. A great number of studies have highlighted that, apart from improving their stability and bioavailability, nanocarrier systems also enhance their target delivery, while reducing drug toxicity and adverse effects. This review article, therefore, covers the recent advances in the drug delivery of anti-inflammatory agents loaded with natural polyphenolics by the application of both organic and inorganic nanocarriers. Even though nanocarrier technology offers a variety of possible anti-inflammatory advantages to naturally occurring polyphenols, the complexes' inherent properties and mechanisms of action have not yet been fully investigated. Thus, expanding the quest on novel natural polyphenolic-loaded delivery systems, together with the optimization of complexes' activity toward inflammation, will be a new direction of future efforts.

14.
mBio ; 14(1): e0351922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744910

RESUMO

Coronavirus disease 2019 (COVID-19) severity has been associated with alterations of the gut microbiota. However, the relationship between gut microbiome alterations and COVID-19 prognosis remains elusive. Here, we performed a genome-resolved metagenomic analysis on fecal samples from 300 in-hospital COVID-19 patients, collected at the time of admission. Among the 2,568 high quality metagenome-assembled genomes (HQMAGs), redundancy analysis identified 33 HQMAGs which showed differential distribution among mild, moderate, and severe/critical severity groups. Co-abundance network analysis determined that the 33 HQMAGs were organized as two competing guilds. Guild 1 harbored more genes for short-chain fatty acid biosynthesis, and fewer genes for virulence and antibiotic resistance, compared with Guild 2. Based on average abundance difference between the two guilds, the guild-level microbiome index (GMI) classified patients from different severity groups (average AUROC [area under the receiver operating curve] = 0.83). Moreover, age-adjusted partial Spearman's correlation showed that GMIs at admission were correlated with 8 clinical parameters, which are predictors for COVID-19 prognosis, on day 7 in hospital. In addition, GMI at admission was associated with death/discharge outcome of the critical patients. We further validated that GMI was able to consistently classify patients with different COVID-19 symptom severities in different countries and differentiated COVID-19 patients from healthy subjects and pneumonia controls in four independent data sets. Thus, this genome-based guild-level signature may facilitate early identification of hospitalized COVID-19 patients with high risk of more severe outcomes at time of admission. IMPORTANCE Previous reports on the associations between COVID-19 and gut microbiome have been constrained by taxonomic-level analysis and overlook the interaction between microbes. By applying a genome-resolved, reference-free, guild-based metagenomic analysis, we demonstrated that the relationship between gut microbiota and COVID-19 is genome-specific instead of taxon-specific or even species-specific. Moreover, the COVID-19-associated genomes were not independent but formed two competing guilds, with Guild 1 potentially beneficial and Guild 2 potentially more detrimental to the host based on comparative genomic analysis. The dominance of Guild 2 over Guild 1 at time of admission was associated with hospitalized COVID-19 patients at high risk for more severe outcomes. Moreover, the guild-level microbiome signature is not only correlated with the symptom severity of COVID-19 patients, but also differentiates COVID-19 patients from pneumonia controls and healthy subjects across different studies. Here, we showed the possibility of using genome-resolved and guild-level microbiome signatures to identify hospitalized COVID-19 patients with a high risk of more severe outcomes at the time of admission.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Fezes , Prognóstico
15.
Food Chem ; 404(Pt A): 134515, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240559

RESUMO

Andrographis paniculata (Burm. F.) Nees (AP) was a typical plant resource that has the concomitant function of both foodstuff and medicine, while the action mechanisms of its immune regulation, anti-inflammatory and anti-viral effects and the specific components remain unclear. In this work, a screening approach combining bio-affinity ultrafiltration with liquid chromatography mass spectrometry (UF-LC/MS) was hired to screen potential bioactive compounds from AP. The crude extract of AP exerted COX-2 and ACE2 inhibitory effects by other bioassays. Meanwhile, a total of eleven ligands targeting COX-2, IL-6 and ACE2 were screened out. Thereinto, two compounds including andrographolide and 14-deoxy-11,12-didehydroandrographolide exhibited strong binding affinities to COX-2, IL-6 and ACE2 by UF-LC/MS and molecular docking analysis. This is the first report to apply UF-LC/MS approach to rapidly screen out multi-target ligands from AP, and further decipher corresponding mechanisms, which could be beneficial to expedite the search for new multi-target bioactive compounds in other natural products or foods.


Assuntos
Andrographis , Diterpenos , Andrographis/química , Andrographis/metabolismo , Ultrafiltração/métodos , Andrographis paniculata , Cromatografia Líquida de Alta Pressão/métodos , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Enzima de Conversão de Angiotensina 2 , Interleucina-6 , Extratos Vegetais/farmacologia , Extratos Vegetais/química
16.
Anal Chem ; 94(47): 16436-16442, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36377666

RESUMO

Label-free electrochemiluminescence (ECL) immunoassays (lf-ECLIA), based on biomarker-induced ECL signal changes, have attracted increasing attention due to the simple, rapid, and low-cost detection of biomarkers without secondary antibodies and complicated labeling procedures. However, the interaction rule and mechanism between analytical interfaces and biomarkers have rarely been explored. Herein, the interactions between biomarkers and analytical interfaces constructed by assembly of a nanoluminophore and antibody-functionalized gold nanoparticles on an indium tin oxide electrode were studied. The nanoluminophore was synthesized by mixing Cu2+/l-cysteine chelate and N-(4-Aminobutyl)-N-ethylisoluminol-bifunctionalized gold nanoparticles with chitosan. It was found that positively charged biomarkers increased the ECL intensity, whereas negatively charged biomarkers decreased the ECL intensity. The assembly pH influenced the biomarker charges, which determined the ECL enhancement or inhibition. The detection pH only affected the ECL intensity but not the ECL changing trends. Based on the ECL signal changes, a charge-dependent lf-ECLIA was established, which exhibited inhibition responses to negatively charged human immunoglobulin G and copeptin and enhancement responses to positively charged cardiac troponin I, heart-type fatty acid binding protein, brain natriuretic peptide, and SARS-CoV-2 N protein. The linear range was 0.1-1000 pg/mL, and the detection limits were distributed in 0.024-0.091 pg/mL. Besides, a mechanism of the charge-dependent ECL enhancement and inhibition effects is proposed, which is very important for the development of new lf-ECLIA methodologies.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Humanos , Ouro , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , SARS-CoV-2 , Imunoensaio/métodos , Biomarcadores , Técnicas Eletroquímicas/métodos , Limite de Detecção
17.
Antibiotics (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289945

RESUMO

An effective response that combines prevention and treatment is still the most anticipated solution to the increasing incidence of antimicrobial resistance (AMR). As the phenomenon continues to evolve, AMR is driving an escalation of hard-to-treat infections and mortality rates. Over the years, bacteria have devised a variety of survival tactics to outwit the antibiotic's effects, yet given their great adaptability, unexpected mechanisms are still to be discovered. Over-expression of efflux pumps (EPs) constitutes the leading strategy of bacterial resistance, and it is also a primary driver in the establishment of multidrug resistance (MDR). Extensive efforts are being made to develop antibiotic resistance breakers (ARBs) with the ultimate goal of re-sensitizing bacteria to medications to which they have become unresponsive. EP inhibitors (EPIs) appear to be the principal group of ARBs used to impair the efflux system machinery. Due to the high toxicity of synthetic EPIs, there is a growing interest in natural, safe, and innocuous ones, whereby plant extracts emerge to be excellent candidates. Besides EPIs, further alternatives are being explored including the development of nanoparticle carriers, biologics, and phage therapy, among others. What roles do EPs play in the occurrence of MDR? What weapons do we have to thwart EP-mediated resistance? What are the obstacles to their development? These are some of the core questions addressed in the present review.

19.
Antioxidants (Basel) ; 11(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36139724

RESUMO

Polygonatum sibiricum Red. (P. sibiricum) has been used as a traditional Chinese medicine with a wide range of pharmacology effects. However, the responsible bioactive compounds and their mechanisms of action concerning its antioxidative and anti-hyperuricemic activities remain unexplored. In this work, the antioxidant capacity of P. sibiricum was firstly evaluated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3ethylbenzthiazoline)-6-sulfonic acid (ABTS) and ferric-reducing antioxidant power (FRAP) assays, from which the ethyl acetate (EA) fraction exhibited the highest DPPH, ABTS radical scavenging, and ferric-reducing capacities. Meanwhile, the EA fraction displayed the highest total phenolic and flavonoid contents among the four fractions. Next, the potential ligands from the EA fraction were screened out by bio-affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS) with superoxide dismutase (SOD) and xanthine oxidase (XOD). As a result, N-trans-p-coumaroyloctopamine, N-trans-feruloyloctopamine, N-trans-feruloyltyramine were identified as potential SOD ligands, while N-cis-p-coumaroyltyramine was determined as potential XOD ligand. Additionally, these four ligands effectively interact with SOD and XOD in the molecular docking analysis, with binding energies (BEs) ranging from -6.83 to -6.51 kcal/mol, and the inhibition constants (Ki) from 9.83 to 16.83 µM, which were better than the positive controls. In conclusion, our results indicated that P. sibiricum has good antioxidative and anti-hyperuricemic activities, and its corresponding active ligands targeting SOD and XOD could be explored by the UF-LC-MS method.

20.
Front Pharmacol ; 13: 980945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105200

RESUMO

E. humifusa Willd, a monoecious annual plant, native to Eastern Asia, has been traditionally attributed to the treatment and prevention of miscellaneous diseases, including diabetes mellitus and its associated complications. Earlier studies have supported this species' pharmacological efficacies including its antibacterial, antidiabetic, and anti-inflammatory properties. Even so, the underlying bioactive components with their mechanisms of action associated with its antidiabetic and anti-inflammatory effects remain elusive. The preamble in vitro assessments of the crude extract and its different fractions revealed that the n-butanol fraction (EHNB) exhibited the best activity, which was subsequently subjected to a rapid screening of candidate ligands through bio-affinity ultrafiltration with the two enzyme targets: α-glucosidase (α-Glu) and cycloxygenase-2 (COX-2) combined with UPLC/QTOF-MS. As a result, 7 compounds were identified from EHNB, among them, vitexin and astragalin were screened out as the most active ligand compounds. Vitexin showed great specific binding (SB) affinity values of 1.26 toward α-Glu and 1.32 toward COX-2, while astragalin showed 1.32 and 1.36, respectively. The docking simulation results exhibited strong interactions of vitexin and astragalin with the key residues of the enzyme targets, suggesting their possible mechanisms of action. The in vitro antidiabetic validation revealed noticeable half-maximal inhibitory effects (IC50) of 36.38 ± 3.06 µM for vitexin and 42.47 ± 4.13 µM for astragalin, much better than that of the positive drug acarbose (109.54 ± 14.23 µM). Similarly, these two compounds showed the inhibitory activity against COX-2 with the half-maximal inhibitory effects (IC50) at 27.91 ± 1.74 µM and 49.05 ± 1.49 µM, respectively. Therefore, these two flavonoid compounds (vitexin and astragalin) were speculated as potential antidiabetic and anti-inflammatory compounds from E. humifusa. Taken together, the integrated strategy applied to E. humifusa led to the fast identification of two potential double-acting flavonoids and enlightened its antidiabetic and anti-inflammatory uses. Besides these findings, the integrated strategy in this study could also be used to facilitate the rapid discovery and development of active candidates from other traditional herbal medicines against multi-drug targets and to aid in revealing their mechanisms of action for their traditional uses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...