Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(12): 4288-4302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554285

RESUMO

Rationale: As a key endogenous negative regulator of ferroptosis, glutathione peroxidase 4 (GPX4) can regulate its antioxidant function through multiple post-translational modification pathways. However, the effects of the phosphorylation/dephosphorylation status of GPX4 on the regulation of inducible ferroptosis in hepatocellular carcinoma (HCC) remain unclear. Methods: To investigate the effects and molecular mechanism of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells. Sorafenib (Sora) was used to establish the ferroptosis model in HCC cells in vitro. Using the site-directed mutagenesis method, we generated the mimic GPX4 phosphorylation or dephosphorylation HCC cell lines at specific serine sites of GPX4. The effects of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells were examined. The interrelationships among GPX4, p53, and protein phosphatase 2A-B55ß subunit (PP2A-B55ß) were also explored. To explore the synergistic anti-tumor effects of PP2A activation on Sora-administered HCC, we established PP2A-B55ß overexpression xenograft tumors in a nude mice model in vivo. Results: In the Sora-induced ferroptosis model of HCC in vitro, decreased levels of cytoplasmic and mitochondrial GPX4, mitochondrial dysfunction, and enhanced p53 retrograde signaling occurred under Sora treatment. Further, we found that mitochondrial p53 retrograded remarkably into the nucleus and aggravated Sora-induced ferroptosis. The phosphorylation status of GPX4 at the serine 2 site (GPX4Ser2) revealed that mitochondrial p-GPX4Ser2 dephosphorylation was positively associated with ferroptosis, and the mechanism might be related to mitochondrial p53 retrograding into the nucleus. In HCC cells overexpressing PP2A-B55ß, it was found that PP2A-B55ß directly interacted with mitochondrial GPX4 and promoted Sora-induced ferroptosis in HCC. Further, PP2A-B55ß reduced the interaction between mitochondrial GPX4 and p53, leading to mitochondrial p53 retrograding into the nucleus. Moreover, it was confirmed that PP2A-B55ß enhanced the ferroptosis-mediated tumor growth inhibition and mitochondrial p53 retrograde signaling in the Sora-treated HCC xenograft tumors. Conclusion: Our data uncovered that the PP2A-B55ß/p-GPX4Ser2/p53 axis was a novel regulatory pathway of Sora-induced ferroptosis. Mitochondrial p-GPX4Ser2 dephosphorylation triggered ferroptosis via inducing mitochondrial p53 retrograding into the nucleus, and PP2A-B55ß was an upstream signal modulator responsible for mitochondrial p-GPX4Ser2 dephosphorylation. Our findings might serve as a potential theranostic strategy to enhance the efficacy of Sora in HCC treatment through the targeted intervention of p-GPX4 dephosphorylation via PP2A-B55ß activation.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteína Fosfatase 2 , Sorafenibe , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Núcleo Celular , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Transplante de Neoplasias , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/uso terapêutico , Proteína Fosfatase 2/metabolismo
2.
Chemosphere ; 262: 127878, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182097

RESUMO

Reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction are known to affect the structural and functional damage in the neural system. Cadmium (Cd) is an environmental contaminant that is widely found in numerous environmental matrices and exhibits potential neurotoxic risk. However, it remains unclear how mitochondrial redox status induces, and whether Cd destabilizes, the ER-mitochondria crosstalk to have a toxic effect on the nervous system. Herein, in our present study, bioinformatics analysis revealed an important role of protein interaction and mitochondrial machinery in brain samples from Alzheimer's disease (AD) patients. Furthermore, we established a neurotoxicity model in vivo and in vitro induced by cadmium chloride (CdCl2). We demonstrated that CdCl2 exposure disrupts the balance in mitochondrial redox represented by enhanced mitochondrial ROS (mitoROS) levels, which enhance mitofusin 2 (Mfn2) S-glutathionylation and interrupt the mitochondria-associated ER membranes (MAMs) for crosstalk between the ER and mitochondria to induce neuronal necroptosis. Mechanistically, it was shown that CdCl2 exposure significantly enhances the mitochondria-associated degradation (MAD) of Mfn2 via S-glutathionylation, which inhibits Mfn2 localization to the MAMs and subsequently leads to the formation of the RIPK1-RIPK3-p-MLKL complex (a key component of the necrosome) at MAMs, to promote neuronal necroptosis. Furthermore, the glutaredoxin 1 (Grx1) catalyzed and Mfn2 overexpression restored S-glu-Mfn2, MAMs perturbation, necrosome formation, and necroptosis in neurons induced by CdCl2 exposure in vitro. Moreover, the intervention with antioxidants to reduce mitochondrial redox, such as N-acetyl-l-cysteine (NAC) and mitochondria-targeted antioxidant Mito-TEMPO, reduced the S-glutathionylation of Mfn2 involved in the antagonism of CdCl2-induced necroptosis and neurotoxicity in vivo and in vitro. Taken together, our results are the first time to demonstrate that S-glutathionylation of Mfn2 promotes neuronal necroptosis via disruption of ER-mitochondria crosstalk in CdCl2-induced neurotoxicity, providing the novel mechanistic insight into how hazardous chemical-induced adverse effects in various organs and tissues could be interpreted by intraorganellar pathways under the control of MAMs components in neurons.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Necroptose , Animais , Cádmio/metabolismo , Cloreto de Cádmio/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores
3.
Nanotoxicology ; 14(2): 162-180, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31703536

RESUMO

Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are central microdomains of the ER that interact with mitochondria. MAMs provide an essential platform for crosstalk between the ER and mitochondria and play a critical role in the local transfer of calcium (Ca2+) to maintain cellular functions. Despite the potential uses of superparamagnetic iron oxide nanoparticles (SPIO-NPs) in biomedical applications, the hepatotoxicity of these nanoparticles (NPs) is not well characterized and little is known about the involvement of MAMs in ER-mitochondria crosstalk. We studied SPIO-NPs-associated hepatotoxicity in vitro and in vivo. In vitro, human normal hepatic L02 cells were exposed to SPIO-NPs (2.5, 7.5, and 12.5 µg/mL) for 6 h and SPIO-NPs (12.5 µg/mL) was found to induce apoptosis. In vivo, SPIO-NPs induced liver injury when mice were intravenously injected with 20 mg/kg body weight SPIO-NPs for 24 h. Based on both in vitro and in vivo studies, we found that the structure and Ca2+ transport function of MAMs were perturbated and an accumulation of cyclooxygenase-2 (COX-2) in MAMs fractions was increased upon treatment of SPIO-NPs. The interaction between COX-2 and the components of MAMs, in terms of IP3R-GRP75-VDAC1 complex, was also revealed. Furthermore, the role of COX-2 in SPIO-NPs-associated hepatotoxicity was investigated by modifying the expression of COX-2. We demonstrated that COX-2 increases the structural and functional ER-mitochondria coupling and enhances the efficacy of ER-mitochondria Ca2+ transfer through the MAMs, thus sensitizing hepatocytes to a mitochondrial Ca2+ overload-dependent apoptosis. Taken together, our findings link SPIO-NPs-triggered hepatotoxicity with ER-mitochondria Ca2+ crosstalk which is mediated by COX-2 and provide mechanistic insight into the impact of interorganelle ER-mitochondria communication on hepatic nanotoxicity.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Técnicas de Cultura de Células , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/enzimologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
Biomed Environ Sci ; 29(4): 286-9, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27241739

RESUMO

Norovirus (NoV) is a pathogen that commonly causes viral diarrhea in children. Studies indicate that NoV recognizes human histo-blood group antigens (HBGAs) as cell attachment factors. In order to explore the correlation between of NoV infection and HBGAs, a cross-sectional study was conducted in children less than five years old who were hospitalized with diarrhea in two areas of China between November 2014 and February 2015. Of the paired stool and saliva samples taken from 424 children, NoV was detected in 24 (6%) children, with viral genotypes GII.3 (n=5), GII.4 (n=14), GII.12 (n=1), and GII.17 (n=4). All of the individuals having NoV infection were either secretors (Lea-b+/Lex-y+) or partial secretors (Lea+b+/Lex+y+) except one GII.3 infection of a non-secretor (Lea+b-/Lex+y-). These results suggest that secretor positive is associated with NoV infection, although non-secretors are not absolutely protected from NoV infection.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Infecções por Caliciviridae/sangue , Infecções por Caliciviridae/complicações , Diarreia/sangue , Diarreia/etiologia , Gastroenterite/sangue , Norovirus/fisiologia , Infecções por Caliciviridae/virologia , Pré-Escolar , China , Estudos Transversais , Diarreia/virologia , Fezes/virologia , Gastroenterite/virologia , Genótipo , Humanos , Lactente
5.
Virology ; 494: 108-18, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27107253

RESUMO

A recent histopathologic study implicated human tonsillar crypt epithelium as an important site for EV71 replication in EV71-caused fatal cases. This study aimed to confirm the susceptibility of human tonsillar epithelium to EV71. Two human tonsillar epithelial cell lines (UT-SCC-60A and UT-SCC-60B) were susceptive to EV71, and PI3K/AKT, p38, ERK1/2, and JNK1/2 signal pathways were activated. Interferon-α, IL-8, IL-1ß, IL-6 and IL-12p40 were induced and regulated by PI3K/AKT, p38, ERK1/2, and JNK1/2 signal pathways. PI3K/AKT pathway activation appeared to suppress the induction of TNF-α, which induced cell survival by inhibiting GSK-3ß. The activation of NF-κB was observed but inhibited by these pathways in EV71 infection. Furthermore, ERK1/2 and JNK1/2 were essential for efficient EV71 replication. Human tonsillar epithelial cells support EV71 replication and display innate antiviral immunity in vitro, indicating that human tonsillar epithelial cells may be novel targets for EV71 infection and replication in vivo.


Assuntos
Citocinas/biossíntese , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Tonsila Palatina/metabolismo , Tonsila Palatina/virologia , Animais , Biomarcadores , Linhagem Celular , Citocinas/genética , Efeito Citopatogênico Viral , Suscetibilidade a Doenças , Células Epiteliais/patologia , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Queratinas/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Viral , Receptores Depuradores/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...