Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 110: 140-151, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858183

RESUMO

Fragile X syndrome (FXS) is the most common inherited intellectual disability, caused by a lack of the fragile X mental retardation protein (FMRP). Individuals with neurodevelopmental disorders frequently experience gastrointestinal problems that are primarily linked to gut microbial dysbiosis, inflammation, and increased intestinal permeability. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) are non-pharmacological agents that exert potential therapeutic effects against neurological disorders. However, it is unclear whether omega-3 PUFAs improve autistic behaviors in fragile X syndrome (FXS) by altering the gut microbial composition. Here, we describe gastrointestinal problems in Fmr1 knockout (KO) mice. FMRP deficiency causes intestinal homeostasis dysfunction in mice. Fish oil (FO) as a source of omega-3 PUFAs reduces intestinal inflammation but increases the mRNA and protein levels of TJP3 in the colon of juvenile Fmr1 KO mice. Fecal microbiota transplantation from FO-fed Fmr1 KO mice increased the gut abundance of Akkermansia and Gordonibacter in recipient Fmr1 KO mice and improved gut homeostasis and autistic behaviors. Our findings demonstrate that omega-3 PUFAs improve autistic behaviors and gut homeostasis in FMRP-deficient mice by suppressing gut microbiota dysbiosis, thereby presenting a novel therapeutic approach for juvenile FXS treatment.


Assuntos
Transtorno Autístico , Síndrome do Cromossomo X Frágil , Microbioma Gastrointestinal , Animais , Camundongos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Disbiose , Modelos Animais de Doenças , Camundongos Knockout , Óleos de Peixe/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética
2.
Front Microbiol ; 13: 956774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046016

RESUMO

In April 2020, 232 tombs of the Western Han Dynasty were found in Sundayuan, Heze City. In total, 141 pottery figurines of significant historical, cultural, and artistic value were unearthed from the tombs. Some of the figurines are currently being stored in warehouses, and the surface of some of the figurines show fungal deterioration. To thoroughly analyze the fungal deterioration on the surface of the pottery figurines and find appropriate control methods, we used high-through sequencing, scanning electron microscopy observation, pure cultures of culturable fungi, and optical microscopy observation and molecular identification of culturable fungi. We conducted fungistatic and simulation experiments in the laboratory to find appropriate control methods. We found that the fungi on the surface of the figurines were mainly of the phylum Ascomycota, and a few fungi were of the phyla Basidiomycota and Mucoromycota. We isolated seven culturable fungal strains and observed their colony morphology. The seven fungal strains were Lecanicillium aphanocladii, Penicillium aurantiogriseum, Clonostachys rosea, Mortierella sp., Mortierella alpina, Aspergillus flavus, and Cladosporium halotolerans. Through the fungistatic and simulation experiments conducted in the laboratory, we found that 50 mg/ml cinnamaldehyde and 0.5% K100 (2-methyl-4-isothiazolin-3-one) have a good fungistatic effect. They can not only inhibit the growth of fungi on medium, but also inhibit the growth of fungi on the surface of pottery figurines. This study has good reference significance for the analysis and control of fungal deterioration of unearthed pottery figurines.

3.
Front Microbiol ; 13: 958914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090103

RESUMO

After the recovery of the ship from the sea on 2007, the Nanhai No. 1 Ancient Shipwreck is currently exposed to the air. Air microorganisms settle on wooden shipwrecks, and they can use wood matrix to grow and multiply, causing biocorrosion and biodegradation. In this study, a systematical survey of the composition of culturable airborne microorganisms was performed at the conservation site of the Nanhai No. 1 Ancient Shipwreck. Airborne microorganisms were collected from seven sites in the preservation Nanhai No. 1 area over five periods. Molecular identification of the culturable microorganisms isolated from the air was done by sequencing both 16S rRNA (bacteria) and ITS (fungi) gene regions. The biodegradability of these strains was evaluated by degradation experiments with cellulose and lignin as substrate. The results showed that the composition of the isolated microbial communities was different in each period, and microbial spatial distribution was dissimilar in the same period. In the recent 2020, the dominant bacterial genus was Acinetobacter, and the dominant fungal genera were Penicillium, Aspergillus, and Cerrena. Acinetobacter spp. can degrade cellulose and lignin. Penicillium spp., Aspergillus spp., and Cerrena spp. degraded cellulose but only Cerrena spp. could utilize lignin. These dominant strains may have a harmful effect on the Nanhai No. 1 Ancient Shipwreck. This study provides data on the airborne microbial community found inside the protective chamber where Nanhai No. 1 Shipereck is placed, which can be used as a reference basis for the future conservation of the ship.

4.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012310

RESUMO

Fungal colonization can severely damage artifacts. Nematode endosymbiotic bacteria exhibit good prospects in protecting artifacts from fungal damage. We previously found that supernatant from the fermentation of nematode endosymbiotic bacterium, Xenorhabdus bovienii, is effective in inhibiting the growth of Fusarium solani NK-NH1, the major disease fungus in the Nanhai No.1 Shipwreck. Further experiments proved that X. bovienii produces volatile organic compounds (VOCs) that inhibit NK-NH1. Here, using metabolomic analysis, GC-MS, and transcriptomic analysis, we explored the antifungal substances and VOCs produced by X. bovienii and investigated the mechanism underlying its inhibitory effect against NK-NH1. We show that X. bovienii produces several metabolites, mainly lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. The VOCs produced by X. bovienii showed two specific absorption peaks, and based on the library ratio results, these were predicted to be of 2-pentanone, 3-(phenylmethylene) and 1-hexen-3-one, 5-methyl-1-phenyl. The inhibition of F. solani by VOCs resulted in upregulation of genes related to ribosome, ribosome biogenesis, and the oxidative phosphorylation and downregulation of many genes associated with cell cycle, meiosis, DNA replication, and autophagy. These results are significant for understanding the inhibitory mechanisms employed by nematode endosymbiotic bacteria and should serve as reference in the protection of artifacts.


Assuntos
Fusarium , Nematoides , Compostos Orgânicos Voláteis , Xenorhabdus , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bactérias/metabolismo , Nematoides/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Xenorhabdus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...