Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37109837

RESUMO

The use of zinc (Zn) alloys as a biodegradable metal for medical purposes has been a popular research topic. This study investigated the strengthening mechanism of Zn alloys to enhance their mechanical properties. Three Zn-0.45Li (wt.%) alloys with different deformation amounts were prepared by rotary forging deformation. Their mechanical properties and microstructures were tested. A simultaneous increase in strength and ductility was observed in the Zn-0.45Li alloys. Grain refinement occurred when the rotary forging deformation reached 75.7%. The surface average grain size reached 1.19 ± 0.31 µm, and the grain size was uniformly distributed. Meanwhile, the maximum elongation of the deformed Zn-0.45Li was 139.2 ± 18.6%, and the ultimate tensile strength reached 426.1 ± 4.7 MPa. In situ tensile tests showed that the reinforced alloys still broke from the grain boundary. Continuous and discontinuous dynamic recrystallization during severe plastic deformation produced many recrystallized grains. During deformation, the dislocation density of the alloy first increased and then decreased, and the texture strength of the (0001) direction increased with deformation. Analysis of the mechanism of alloy strengthening showed that the strength and plasticity enhancement of Zn-Li alloys after macro deformation was a combination of dislocation strengthening, weave strengthening, and grain refinement rather than only fine-grain strengthening as observed in conventional macro-deformed Zn alloys.

2.
Mater Sci Eng C Mater Biol Appl ; 118: 111391, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254997

RESUMO

An ultrafine- and uniform-grained Zn-0.5Mn alloy (D3 alloy, stands for deformation rate of 99.5%) is fabricated via multi-pass drawing. The alloy features excellent ductility and elongation properties (up to 245.0% ± 9.0% at room temperature). Zn-0.5Mn alloys are composed of two phases, namely, Zn and MnZn13. The MnZn13 phase confers multiple effects during refinement by inducing and pinning low-angle boundaries within grains. Meanwhile, the presence of these phases along grain boundaries prevents the growth of new refined grains. D3 shows uniform corrosion behaviors in c-SBF solution on account of the even distribution of the MnZn13 phase in its microstructure. Animal implantation experiments indicate that D3 has good biocompatibility; it does not cause damage to bone tissue or other organs. Taking the results together, D3 may be developed into a new type of biodegradable material with remarkable elongation and corrosion properties and satisfactory biocompatibility for medical applications.


Assuntos
Ligas , Zinco , Animais , Corrosão , Resistência à Tração
3.
J Mech Behav Biomed Mater ; 95: 220-231, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022667

RESUMO

The influence of Mg content on the mechanical properties, degradation behavior, in vitro cell adhesion, and in vivo behavior of as-extruded Zn-xMg-0.1Ca (x = 0.5 wt%, 1.0 wt%, 1.5 wt%) alloys was investigated. A high Mg content could increase the volume fraction of the hard Mg2Zn11 phase distributed at grain boundaries. This condition could significantly improve yield strength and ultimate tensile strength. Mg addition could adjust the degradation rate of Zn alloys and influence cytocompatibility. ZnMg1Ca0.1 alloy showed the highest adhesion density of bone marrow-derived mesenchymal stem cells (BMSCs) because the degradation rate of ZnMg1Ca0.1 alloy could supply appropriate pH and [Zn2+] for BMSCs. Mg addition could improve the cytocompatibility of ZnMgCa alloys. However, a Mg content threshold was observed, and the Mg content should be exactly controlled. Combined with the mechanical properties, the degradation rate of zinc alloy implants could be adjusted to match the healing of tissues by adding Mg. In vivo results showed that the degradation rate of the optimized ZnMgCa alloy could match the healing of local tissues or organs. Animal implant results revealed alloy safety.


Assuntos
Ligas/química , Ligas/farmacologia , Cálcio/química , Magnésio/química , Fenômenos Mecânicos , Zinco/química , Animais , Adesão Celular/efeitos dos fármacos , Corrosão , Eletroquímica , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Segurança , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA