Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(22): e202402255, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38551062

RESUMO

With the prosperity of the development of carbon nanorings, certain topologically or functionally unique units-embedded carbon nanorings have sprung up in the past decade. Herein, we report the facile and efficient synthesis of three cyclooctatetraene-embedded carbon nanorings (COTCNRs) that contain three (COTCNR1 and COTCNR2) and four (COTCNR3) COT units in a one-pot Yamamoto coupling. These nanorings feature hoop-shaped segments of Gyroid (G-), Diamond (D-), and Primitive (P-) type carbon schwarzites. The conformations of the trimeric nanorings COTCNR1 and COTCNR2 are shape-persistent, whereas the tetrameric COTCNR3 possesses a flexible carbon skeleton which undergoes conformational changes upon forming host-guest complexes with fullerenes (C60 and C70), whose co-crystals may potentially serve as fullerene-based semiconducting supramolecular wires with electrical conductivities on the order of 10-7 S cm-1 (for C60⊂COTCNR3) and 10-8 S cm-1 (for C70⊂COTCNR3) under ambient conditions. This research not only describes highly efficient one-step syntheses of three cyclooctatetraene-embedded carbon nanorings which feature hoop-shaped segments of distinctive topological carbon schwarzites, but also demonstrates the potential application in electronics of the one-dimensional fullerene arrays secured by COTCNR3.

2.
Angew Chem Int Ed Engl ; 63(13): e202317947, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38298087

RESUMO

Although our knowledge and understanding of adsorptions in natural and artificial systems has increased dramatically during the past century, adsorption associated with nonporous polymers remains something of a mystery, hampering applications. Here we demonstrate a model system for adaptisorption of nonporous polymers, wherein dative B-N bonds and host-guest binding units act as the kinetic and thermodynamic components, respectively. The coupling of these two components enables nonporous polymer crystals to adsorb molecules from solution and undergo recrystallization as thermodynamically favored crystals. Adaptisorption of nonporous polymer crystals not only extends the types of adsorption in which the sorbate molecules are integrated in a precise and orderly manner in the sorbent systems, but also provides a facile and accurate approach to the construction of polymeric materials with precise architectures and integrated functions.

3.
Seizure ; 116: 93-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37643945

RESUMO

OBJECTIVES: Variants in NEXMIF had been reported associated with intellectual disability (ID) without epilepsy or developmental epileptic encephalopathy (DEE). It is unkown whether NEXMIF variants are associated with epilepsy without ID. This study aims to explore the phenotypic spectrum of NEXMIF and the genotype-phenotype correlations. MATERIALS AND METHODS: Trio-based whole-exome sequencing was performed in patients with epilepsy. Previously reported NEXMIF variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS: Six variants were identified in seven unrelated cases with epilepsy, including two de novo null variants and four hemizygous missense variants. The two de novo variants were absent in all populations of gnomAD and four hemizygous missense variants were absent in male controls of gnomAD. The two patients with de novo null variants exhibited severe developmental epileptic encephalopathy. While, the patients with hemizygous missense variants had mild focal epilepsy with favorable outcome. Analysis of previously reported cases revealed that males with missense variants presented significantly higher percentage of normal intellectual development and later onset age of seizure than those with null variants, indicating a genotype-phenotype correlation. CONCLUSION: This study suggested that NEXMIF variants were potentially associated with pure epilepsy with or without intellectual disability. The spectrum of epileptic phenotypes ranged from the mild epilepsy to severe developmental epileptic encephalopathy, where the epileptic phenotypes variability are potentially associated with patients' gender and variant type.


Assuntos
Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Masculino , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Epilepsia/complicações , Epilepsia/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Epilepsia Generalizada/genética , Fenótipo
4.
Polymers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896403

RESUMO

Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.

5.
Chem Sci ; 14(31): 8393-8400, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37564407

RESUMO

In contrast to a plethora of macrocyclic and cage compounds, spirophanes have remained largely unexplored. We report herein the construction, structure and properties of unprecedented tetrahomo corona[4]arene-based ditopic and tritopic macrocycles of spiro structures. Synthesis was conveniently achieved by means of an efficient SNAr reaction from simple and commercially available starting materials. Racemic samples were resolved into enantiopure chiral tetrahomo i-corona[4]arenes, spirophanes and bispirophanes which show interesting chiroptical properties. The acquired electron-deficient macrocyclic compounds were found to adopt unique conformational structures and to form distinct complexes with TTF in the solid state. Our study provides a new opportunity to develop multitopic macrocycles of different topologies which have potential applications in supramolecular chemistry.

6.
J Am Chem Soc ; 145(24): 13223-13231, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294599

RESUMO

Single-crystal-to-single-crystal (SCSC) polymerization offers an effective protocol for the environmentally friendly preparation of polymer single crystals (PSCs) with extremely high crystallinity and very large molecular weights. Single-crystal X-ray diffraction (SCXRD) serves as a powerful technique for the in-depth characterization of their structures at a molecular level. Hence, a fundamental understanding of the structure-property relationships of PSCs is within our reach. Most of the reported PSCs, however, suffer from poor solubility, a property which hampers their post-functionalization and solution processability when it comes to practical applications. Here, we report soluble and processable PSCs with rigid polycationic backbones by taking advantage of an ultraviolet-induced topochemical polymerization from an elaborately designed monomer that results in a multitude of photoinduced [2 + 2] cycloadditions. The high crystallinity and excellent solubility of the resulting polymeric crystals enable their characterization both in the solid state by X-ray crystallography and electron microscopy and in the solution phase by NMR spectroscopy. The topochemical polymerization follows first-order reaction kinetics to a first approximation. Post-functionalization of the PSCs by anion exchange renders them super-hydrophobic materials for water purification. Solution processability endows PSCs with excellent gel-like rheological properties. This research represents a major step towards the controlled synthesis and full characterization of soluble single-crystalline polymers, which may find application in the fabrication of PSCs with many different functions.

7.
J Am Chem Soc ; 145(16): 9118-9128, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37015020

RESUMO

The novel selenoviologen-based tetracationic cyclophanes (green boxes 3 and 5) with rigid electron-deficient cavities are synthesized via SN2 reactions in two steps. The green boxes exhibit good redox properties, narrow energy gaps, and strong absorption in the visible range (370-470 nm), especially for the green box 5 containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that the green boxes have a stabilized dicationic biradical, high efficiency of intramolecular charge transfer (ICT), and long-lived charge separation state due to the formation of cyclophane structure. Based on the excellent photophysical and redox properties, the green boxes are applied to electrochromic devices (ECDs) and visible-light-driven hydrogen production with a high H2 generation rate (34 µmol/h), turnover number (203), and apparent quantum yield (5.33 × 10-2). In addition, the host-guest recognitions are demonstrated between the green boxes and electron-rich guests (e.g., G1:1-naphthol and G2:platinum(II)-tethered naphthalene) in MeCN through C-H···π and π···π interactions. As a one-component system, the host-guest complexes of green box⊃G2 are successfully applied to visible-light photocatalytic hydrogen production due to the intramolecular electron transfer (IET) between platinum(II) of G2 and SeV2+ of the green box, which provides a simplified system for solar energy conversion.

8.
Nature ; 613(7943): 280-286, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631649

RESUMO

Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors1-3 that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane4,5, in which two cyclobis(paraquat-p-phenylene)6 (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet7,8, whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by FOF1 ATP synthase9. The unidirectionality is powered by an oscillating10 voltage11,12 or external modulation of the redox potential13. Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound14 electric molecular motors.

9.
Chem Sci ; 13(21): 6254-6261, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35733889

RESUMO

Here, we announce the establishment of a new family of organic molecular cages, named cagearenes, by taking advantage of a versatile strategy. These cagearenes were prepared via the Friedel-Crafts reaction by condensing two equivalents of a precursor bearing three 1,4-dimethoxybenzene groups and three equivalents of formaldehyde. Two cages, namely cagearene-1 and cagearene-2, are obtained and well characterized. The cagearene-1 solid exhibits the ability to adsorb benzene vapour from an equimolar benzene/cyclohexane mixture with a purity of 91.1%. Then, the adsorbed benzene molecules can be released from the cage at a relatively lower temperature, namely 70 °C, as a consequence of which, cyclohexane with a high purity was left within the cage solid. Heating the cage solid further at 130 °C led to the production of cyclohexane with a purity up to 98.7%. As inferred from the single crystal structures and theoretical calculations, the ability of the cage in programmed release of benzene and cyclohexane results from the different binding modes of these two guests.

10.
Front Mol Neurosci ; 15: 825390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663266

RESUMO

Objective: The LAMA5 gene encodes the laminin subunit α5, the most abundant laminin α subunit in the human brain. It forms heterotrimers with the subunit ß1/ß2 and γ1/γ3 and regulates neurodevelopmental processes. Genes encoding subunits of the laminin heterotrimers containing subunit α5 have been reported to be associated with human diseases. Among LAMAs encoding the laminin α subunit, LAMA1-4 have also been reported to be associated with human disease. In this study, we investigated the association between LAMA5 and epilepsy. Methods: Trios-based whole-exome sequencing was performed in a cohort of 118 infants suffering from focal seizures with or without spasms. Protein modeling was used to assess the damaging effects of variations. The LAMAs expression was analyzed with data from the GTEX and VarCards databases. Results: Six pairs of compound heterozygous missense variants in LAMA5 were identified in six unrelated patients. All affected individuals suffered from focal seizures with mild developmental delay, and three patients presented also spasms. These variants had no or low allele frequencies in controls and presented statistically higher frequency in the case cohort than in controls. The recessive burden analysis showed that recessive LAMA5 variants identified in this cohort were significantly more than the expected number in the East Asian population. Protein modeling showed that at least one variant in each pair of biallelic variants affected hydrogen bonds with surrounding amino acids. Among the biallelic variants in cases with only focal seizures, two variants of each pair were located in different structural domains or domains/links, whereas in the cases with spasms, the biallelic variants were constituted by two variants in the identical functional domains or both with hydrogen bond changes. Conclusion: Recessive LAMA5 variants were potentially associated with infant epilepsy. The establishment of the association between LAMA5 and epilepsy will facilitate the genetic diagnosis and management in patients with infant epilepsy.

12.
J Fluoresc ; 32(4): 1369-1380, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35384545

RESUMO

Three novel D-π-π-A prototype compounds, namely, (E)-2-(3-([1,1'-biphenyl]-2-yl)-1-(9H-fluoren-2-yl)allylidene)malononitri-le (2-BAM), (E)-2-(3-([1,1'-biphenyl]-3-yl)-1-(9H-fluoren-2-yl)allylidene)malononitri-le (3-BAM), and (E)-2-(3-([1,1'-biphenyl]-4-yl)-1-(9H-fluoren-2-yl)allylidene)malononitri-le (4-BAM) were synthesized. Furthermore, the structures and photophysical properties of three compounds were compared. Molecules of 2-BAM were packed into a 1D column structure with H-aggregation. However, both of 3-BAM and 4-BAM were packed into 3D layer structures with J-aggregation, respectively. Although all three compounds showed highly twisted molecular geometries, their respective molecular packing and intermolecular interactions were different. Because of the differences in electronic structures of molecules, three compounds displayed different emission behaviors in solid and dilute solution states. This study indicated that changing the position of biphenyl groups is an effective way for turning the structures and photophysical properties of such D-π-π-A prototype fluorescent materials.

13.
Proc Natl Acad Sci U S A ; 119(12): e2118573119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290119

RESUMO

Although catenanes comprising two ring-shaped components can be made in large quantities by templation, the preparation of three-dimensional (3D) catenanes with cage-shaped components is still in its infancy. Here, we report the design and syntheses of two 3D catenanes by a sequence of SN2 reactions in one pot. The resulting triply mechanically interlocked molecules were fully characterized in both the solution and solid states. Mechanistic studies have revealed that a suit[3]ane, which contains a threefold symmetric cage component as the suit and a tribromide component as the body, is formed at elevated temperatures. This suit[3]ane was identified as the key reactive intermediate for the selective formation of the two 3D catenanes which do not represent thermodynamic minima. We foresee a future in which this particular synthetic strategy guides the rational design and production of mechanically interlocked molecules under kinetic control.


Assuntos
Catenanos , Rotaxanos , Catenanos/química , Cinética , Rotaxanos/química
14.
Science ; 374(6572): 1215-1221, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672694

RESUMO

Over the past century, adsorption has been investigated extensively in equilibrium systems, with a focus on the van der Waals interactions associated with physisorption and electronic interactions in the case of chemisorption. In this study, we demonstrate mechanisorption, which results from nonequilibrium pumping to form mechanical bonds between the adsorbent and the adsorbate. This active mode of adsorption has been realized on surfaces of metal-organic frameworks grafted with arrays of molecular pumps. Adsorbates are transported from one well-defined compartment, the bulk, to another well-defined compartment, the interface, thereby creating large potential gradients in the form of chemical capacitors wherein energy is stored in metastable states. Mechanisorption extends, in a fundamental manner, the scope and potential of adsorption phenomena and offers a transformative approach to control chemistry at surfaces and interfaces.

15.
J Am Chem Soc ; 143(38): 15688-15700, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34505510

RESUMO

The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.

16.
J Am Chem Soc ; 143(24): 9129-9139, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34080831

RESUMO

For the most part, enzymes contain one active site wherein they catalyze in a serial manner chemical reactions between substrates both efficiently and rapidly. Imagine if a situation could be created within a chiral porous crystal containing trillions of active sites where substrates can reside in vast numbers before being converted in parallel into products. Here, we report how it is possible to incorporate 1-anthracenecarboxylate (1-AC-) as a substrate into a γ-cyclodextrin-containing metal-organic framework (CD-MOF-1), where the metals are K+ cations, prior to carrying out [4+4] photodimerizations between pairs of substrate molecules, affording selectively one of four possible regioisomers. One of the high-yielding regioisomers exhibits optical activity as a result of the presence of an 8:1 ratio of the two enantiomers following separation by high-performance liquid chromatography. The solid-state superstructure of 1-anthracenecarboxylate potassium salt (1-ACK), which is co-crystallized with γ-cyclodextrin, reveals that pairs of substrate molecules are not only packed inside tunnels between spherical cavities present in CD-MOF-1, but also stabilized-in addition to hydrogen-bonding to the C-2 and C-3 hydroxyl groups on the d-glucopyranosyl residues present in the γ-cyclodextrin tori-by combinations of hydrophobic and electrostatic interactions between the carboxyl groups in 1-AC- and four K+ cations on the waistline between the two γ-cyclodextrin tori in the tunnels. These non-covalent bonding interactions result in preferred co-conformations that account for the highly regio- and enantioselective [4+4] cycloaddition during photoirradiation. Theoretical calculations, in conjunction with crystallography, support the regio- and stereochemical outcome of the photodimerization.


Assuntos
Ciclodextrinas/química , Estruturas Metalorgânicas/química , Ciclodextrinas/síntese química , Dimerização , Estruturas Metalorgânicas/síntese química , Conformação Molecular , Processos Fotoquímicos , Estereoisomerismo
17.
Nat Chem ; 13(5): 402-419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859393

RESUMO

Aromatic hydrocarbon belts (AHCBs) have fascinated scientists for over half a century because of their aesthetically appealing structures and potential applications in the field of carbon nanotechnology. One of the enduring challenges in synthesizing AHCBs is how do we cope with the build-up of energy in the highly strained structures during their synthesis? Successful preparations of AHCBs offer the prospect of providing well-defined templates for the growth of uniform single-walled carbon nanotubes-a long-standing interest in nanocarbon science. In this Review, we revisit the protracted historical background involving the rational design and synthesis of AHCBs and highlight some of the more recent breakthroughs, with emphasis being placed on the different strategies that have been used for building up curved and fused benzenoid rings into molecular belts. We also discuss the scientific challenges in this fledgling field and provide some pointers as to what could transpire in years to come.

18.
J Am Chem Soc ; 143(7): 2886-2895, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577309

RESUMO

The charge transport in single-molecule junctions depends critically on the chemical identity of the anchor groups that are used to connect the molecular wires to the electrodes. In this research, we report a new anchoring strategy, called the electrostatic anchor, formed through the efficient Coulombic interaction between the gold electrodes and the positively charged pyridinium terminal groups. Our results show that these pyridinium groups serve as efficient electrostatic anchors forming robust gold-molecule-gold junctions. We have also observed binary switching in dicationic viologen molecular junctions, demonstrating an electron injection-induced redox switching in single-molecule junctions. We attribute the difference in low- and high-conductance states to a dicationic ground state and a radical cationic metastable state, respectively. Overall, this anchoring strategy and redox-switching mechanism could constitute the basis for a new class of redox-activated single-molecule switches.

19.
Angew Chem Int Ed Engl ; 59(52): 23649-23658, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047450

RESUMO

Despite the aesthetically appealing structures and tantalizing physical and chemical properties, zigzag hydrocarbon belts and their heteroatom-embedded analogues remain challenging synthetic targets. We report herein the synthesis of diverse O/N-doped zigzag hydrocarbon belts based on selective bridging of the fjords of resorcin[4]arene derivatives through intramolecular SN Ar and palladium-catalyzed intermolecular C-N bond formation reactions. Preorganized conformations of mono-macrocyclic, half-belt and quasi-belt compounds were revealed to facilitate cyclization reactions to construct heteroatom-linked octahydrobelt[8]arenes. The acquired products had strained square-prism-shaped belt structures in which all six-membered heterocyclic rings adopted an unusual boat conformation with equatorially configured alkyl groups. The unprecedented heteroatom-bearing belts also exhibited different photophysical and redox properties to those of octahydrobelt[8]arene analogues.

20.
J Am Chem Soc ; 142(34): 14443-14449, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32787240

RESUMO

The ability to control the relative motions of component parts in molecules is essential for the development of molecular nanotechnology. The advent of mechanically interlocked molecules (MIMs) has enhanced significantly the opportunities for chemists to harness such motions in artificial molecular machines (AMMs). Recently, we have developed artificial molecular pumps (AMPs) capable of producing highly energetic oligo- and polyrotaxanes with high precision. Here, we report the design, synthesis, and operation of an AMP incorporating a photocleavable stopper that allows for the use of orthogonal stimuli. Our approach employs a ratchet mechanism to pump a ring onto a collecting chain, forming an intermediate [2]rotaxane. At a subsequent time, application of light triggers the release of the ring back into the bulk solution with temporal control. This process is monitored by the quenching of the fluorescence of a naphthalene-based fluorophore. This design may find application in the fabrication of molecular transporting systems with on-demand functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...