Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4700, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543693

RESUMO

A comorbidity of chronic pain is sleep disturbance. Here, we identify a dual-functional ensemble that regulates both pain-like behaviour induced by chronic constrictive injury or complete Freund's adjuvant, and sleep wakefulness, in the nucleus accumbens (NAc) in mice. Specifically, a select population of NAc neurons exhibits increased activity either upon nociceptive stimulation or during wakefulness. Experimental activation of the ensemble neurons exacerbates pain-like (nociceptive) responses and reduces NREM sleep, while inactivation of these neurons produces the opposite effects. Furthermore, NAc ensemble primarily consists of D1 neurons and projects divergently to the ventral tegmental area (VTA) and preoptic area (POA). Silencing an ensemble innervating VTA neurons selectively increases nociceptive responses without affecting sleep, whereas inhibiting ensemble-innervating POA neurons decreases NREM sleep without affecting nociception. These results suggest a common NAc ensemble that encodes chronic pain and controls sleep, and achieves the modality specificity through its divergent downstream circuit targets.


Assuntos
Dor Crônica , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/fisiologia , Área Tegmentar Ventral/fisiologia , Neurônios , Sono/fisiologia
2.
Br J Anaesth ; 130(4): 446-458, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737387

RESUMO

BACKGROUND: Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS: With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS: PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS: CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.


Assuntos
Anestesia , Isoflurano , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Isoflurano/farmacologia , Hipotálamo/metabolismo
3.
Front Pharmacol ; 12: 740012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646140

RESUMO

The same doses of anesthesia may yield varying depths of anesthesia in different patients. Clinical studies have revealed a possible causal relationship between deep anesthesia and negative short- and long-term patient outcomes. However, a reliable index and method of the clinical monitoring of deep anesthesia and detecting latency remain lacking. As burst-suppression is a characteristic phenomenon of deep anesthesia, the present study investigated the relationship between burst-suppression latency (BSL) and the subsequent burst-suppression ratio (BSR) to find an improved detection for the onset of intraoperative deep anesthesia. The mice were divided young, adult and old group treated with 1.0% or 1.5% isoflurane anesthesia alone for 2 h. In addition, the adult mice were pretreated with intraperitoneal injection of ketamine, dexmedetomidine, midazolam or propofol before they were anesthetized by 1.0% isoflurane for 2 h. Continuous frontal, parietal and occipital electroencephalogram (EEG) were acquired during anesthesia. The time from the onset of anesthesia to the first occurrence of burst-suppression was defined as BSL, while BSR was calculated as percentage of burst-suppression time that was spent in suppression periods. Under 1.0% isoflurane anesthesia, we found a negative correlation between BSL and BSR for EEG recordings obtained from the parietal lobes of young mice, from the parietal and occipital lobes of adult mice, and the occipital lobes of old mice. Under 1.5% isoflurane anesthesia, only the BSL calculated from EEG data obtained from the occipital lobe was negatively correlated with BSR in all mice. Furthermore, in adult mice receiving 1.0% isoflurane anesthesia, the co-administration of ketamine and midazolam, but not dexmedetomidine and propofol, significantly decreased BSL and increased BSR. Together, these data suggest that BSL can detect burst-suppression and predict the subsequent BSR under isoflurane anesthesia used alone or in combination with anesthetics or adjuvant drugs. Furthermore, the consistent negative correlation between BSL and BSR calculated from occipital EEG recordings recommends it as the optimal position for monitoring burst-suppression.

4.
Anesthesiology ; 135(3): 463-481, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259824

RESUMO

BACKGROUND: The γ-aminobutyric acid-mediated (GABAergic) inhibitory system in the brain is critical for regulation of sleep-wake and general anesthesia. The lateral septum contains mainly GABAergic neurons, being cytoarchitectonically divided into the dorsal, intermediate, and ventral parts. This study hypothesized that GABAergic neurons of the lateral septum participate in the control of wakefulness and promote recovery from anesthesia. METHODS: By employing fiber photometry, chemogenetic and optogenetic neuronal manipulations, anterograde tracing, in vivo electrophysiology, and electroencephalogram/electromyography recordings in adult male mice, the authors measured the role of lateral septum GABAergic neurons to the control of sleep-wake transition and anesthesia emergence and the corresponding neuron circuits in arousal and emergence control. RESULTS: The GABAergic neurons of the lateral septum exhibited high activities during the awake state by in vivo fiber photometry recordings (awake vs. non-rapid eye movement sleep: 3.3 ± 1.4% vs. -1.3 ± 1.2%, P < 0.001, n = 7 mice/group; awake vs. anesthesia: 2.6 ± 1.2% vs. -1.3 ± 0.8%, P < 0.001, n = 7 mice/group). Using chemogenetic stimulation of lateral septum GABAergic neurons resulted in a 100.5% increase in wakefulness and a 51.2% reduction in non-rapid eye movement sleep. Optogenetic activation of these GABAergic neurons promoted wakefulness from sleep (median [25th, 75th percentiles]: 153.0 [115.9, 179.7] s to 4.0 [3.4, 4.6] s, P = 0.009, n = 5 mice/group) and accelerated emergence from isoflurane anesthesia (514.4 ± 122.2 s vs. 226.5 ± 53.3 s, P < 0.001, n = 8 mice/group). Furthermore, the authors demonstrated that the lateral septum GABAergic neurons send 70.7% (228 of 323 cells) of monosynaptic projections to the ventral tegmental area GABAergic neurons, preferentially inhibiting their activities and thus regulating wakefulness and isoflurane anesthesia depth. CONCLUSIONS: The results uncover a fundamental role of the lateral septum GABAergic neurons and their circuit in maintaining awake state and promoting general anesthesia emergence time.


Assuntos
Anestesia/métodos , Neurônios GABAérgicos/fisiologia , Núcleos Septais/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Neurônios GABAérgicos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Núcleos Septais/química
5.
Neuron ; 82(5): 1088-100, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24908488

RESUMO

SNARE-complex assembly mediates synaptic vesicle fusion during neurotransmitter release and requires that the target-SNARE protein syntaxin-1 switches from a closed to an open conformation. Although many SNARE proteins are available per vesicle, only one to three SNARE complexes are minimally needed for a fusion reaction. Here, we use high-resolution measurements of synaptic transmission in the calyx-of-Held synapse from mutant mice in which syntaxin-1 is rendered constitutively open and SNARE-complex assembly is enhanced to examine the relation between SNARE-complex assembly and neurotransmitter release. We show that enhancing SNARE-complex assembly dramatically increases the speed of evoked release, potentiates the Ca(2+)-affinity of release, and accelerates fusion-pore expansion during individual vesicle fusion events. Our data indicate that the number of assembled SNARE complexes per vesicle during fusion determines the presynaptic release probability and fusion kinetics and suggest a mechanism whereby proteins (Munc13 or RIM) may control presynaptic plasticity by regulating SNARE-complex assembly.


Assuntos
Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Proteínas SNARE/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animais , Células HEK293 , Humanos , Fusão de Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Sintaxina 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...