Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 2541-2551, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227821

RESUMO

Quantum tunneling, in which electrons can tunnel through a finite potential barrier while simultaneously interacting with other matter excitation, is one of the most fascinating phenomena without classical correspondence. In an extremely thin metallic nanogap, the deep-subwavelength-confined plasmon modes can be directly excited by the inelastically tunneling electrons driven by an externally applied voltage. Light emission via inelastic tunneling possesses a great potential application for next-generation light sources, with great superiority of ultracompact integration, large bandwidth, and ultrafast response. In this Perspective, we first briefly introduce the mechanism of plasmon generation in the inelastic electron tunneling process. Then the state of the art in plasmonic tunneling junctions will be reviewed, particularly emphasizing efficiency improvement, precise construction, active control, and electrically driven optical antenna integration. Ultimately, we forecast some promising and critical prospects that require further investigation.

2.
Light Sci Appl ; 12(1): 220, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37679312

RESUMO

Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions. Rationally engineering the favorable properties of polaritons is critically required for the rapidly growing research. Here, we demonstrate the manipulation of nonlinear polaritons with the lithographically defined potential landscapes in monolayer WS2 microcavities. The discretization of photoluminescence dispersions and spatially confined patterns indicate the deterministic on-site localization of polaritons by the artificial mesa cavities. Varying the trapping sizes, the polariton-reservoir interaction strength is enhanced by about six times through managing the polariton-exciton spatial overlap. Meanwhile, the coherence of trapped polaritons is significantly improved due to the spectral narrowing and tailored in a picosecond range. Therefore, our work not only offers a convenient approach to manipulating the nonlinearity and coherence of polaritons but also opens up possibilities for exploring many-body phenomena and developing novel polaritonic devices based on 2D materials.

3.
Natl Sci Rev ; 9(6): nwab135, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35795458

RESUMO

Stacking atomically thin films enables artificial construction of van der Waals heterostructures with exotic functionalities such as superconductivity, the quantum Hall effect, and engineered light-matter interactions. In particular, heterobilayers composed of monolayer transition metal dichalcogenides have attracted significant interest due to their controllable interlayer coupling and trapped valley excitons in moiré superlattices. However, the identification of twist-angle-modulated optical transitions in heterobilayers is sometimes controversial since both momentum-direct (K-K) and -indirect excitons reside on the low energy side of the bright exciton in the monolayer constituents. Here, we attribute the optical transition at ∼1.35 eV in the WS2/WSe2 heterobilayer to an indirect Γ-K transition based on a systematic analysis and comparison of experimental photoluminescence spectra with theoretical calculations. The exciton wavefunction obtained by the state-of-the-art GW-Bethe-Salpeter equation approach indicates that both the electron and hole of the excitons are contributed by the WS2 layer. Polarization-resolved k-space imaging further confirms that the transition dipole moment of this optical transition is dominantly in-plane and is independent of the twist angle. The calculated absorption spectrum predicts that the so-called interlayer exciton peak coming from the K-K transition is located at 1.06 eV, but with a much weaker amplitude. Our work provides new insight into the steady-state and dynamic properties of twist-angle-dependent excitons in van der Waals heterostructures.

4.
Nano Lett ; 20(11): 7956-7963, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33172279

RESUMO

Monolayer transition metal dichalcogenides possess considerable second-order nonlinear coefficients but a limited efficiency of frequency conversion due to the short interaction length with light under the typical direct illumination. Here, we demonstrate an efficient frequency mixing of the guided surface waves on a monolayer tungsten disulfide (WS2) by simultaneously lifting the temporal and spatial overlap of the guided wave and the nonlinear crystal. Three orders-of-magnitude enhancement of the conversion efficiency was achieved in the counter-propagating excitation configuration. Also, the frequency-mixing signals are highly collimated, with the emission direction and polarization controlled, respectively, by the pump frequencies and the rotation angle of WS2 relative to the propagation direction of the guided waves. These results indicate that the rules of nonlinear frequency conversion are applicable even when the crystal is scaled down to the ultimate single-layer limit. This study provides a versatile platform to enhance the nonlinear optical response of 2D materials and favor the scalable generation of a coherent light source and entangled photon pairs.

5.
Phys Rev Lett ; 123(18): 183903, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763900

RESUMO

Spontaneous Raman scattering is a second-order perturbation process with two photons linking the internal structures of the matter. The frequency-shifted Raman peaks are sharp and carry rich information about the internal structures. However, encoding and manipulating this information have been barely explored up to now. Here, we report the high-fidelity routing of a chiral Raman signal into propagating surface plasmon polaritons along a silver nanowire based on spin-orbit interaction of light. A directionality up to 91.5±0.5% is achieved and can be quantitatively controlled by tuning the polarization of the incident laser and the position of excitation. The deterministic routing of the Raman signal is sensitively dependent on the local spin density of the plasmon field and the polarization of the Raman modes. This study extends the spin-orbit interaction of light to the Raman scattering regime and proposes a new perspective for the remote readout of local optical chirality, helicity-related directional sorting, and quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...