Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
J Orthop Translat ; 46: 18-32, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774916

RESUMO

Background: Osteochondral regeneration has long been recognized as a complex and challenging project in the field of tissue engineering. In particular, reconstructing the osteochondral interface is crucial for determining the effectiveness of the repair. Although several artificial layered or gradient scaffolds have been developed recently to simulate the natural interface, the functions of this unique structure have still not been fully replicated. In this paper, we utilized laser micro-patterning technology (LMPT) to modify the natural osteochondral "plugs" for use as grafts and aimed to directly apply the functional interface unit to repair osteochondral defects in a goat model. Methods: For in vitro evaluations, the optimal combination of LMPT parameters was confirmed through mechanical testing, finite element analysis, and comparing decellularization efficiency. The structural and biological properties of the laser micro-patterned osteochondral implants (LMP-OI) were verified by measuring the permeability of the interface and assessing the recellularization processes. In the goat model for osteochondral regeneration, a conical frustum-shaped defect was specifically created in the weight-bearing area of femoral condyles using a customized trephine with a variable diameter. This unreported defect shape enabled the implant to properly self-fix as expected. Results: The micro-patterning with the suitable pore density and morphology increased the permeability of the LMP-OIs, accelerated decellularization, maintained mechanical stability, and provided two relative independent microenvironments for subsequent recellularization. The LMP-OIs with goat's autologous bone marrow stromal cells in the cartilage layer have securely integrated into the osteochondral defects. At 6 and 12 months after implantation, both imaging and histological assessments showed a significant improvement in the healing of the cartilage and subchondral bone. Conclusion: With the natural interface unit and zonal recellularization, the LMP-OI is an ideal scaffold to repair osteochondral defects especially in large animals. The translational potential of this article: These findings suggest that such a modified xenogeneic osteochondral implant could potentially be explored in clinical translation for treatment of osteochondral injuries. Furthermore, trimming a conical frustum shape to the defect region, especially for large-sized defects, may be an effective way to achieve self-fixing for the implant.

2.
Int J Biol Macromol ; 263(Pt 1): 130237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368980

RESUMO

Breast cancer has become the most diagnosed cancer type, endangering the health of women. Patients with breast resection are likely to suffer serious physical and mental trauma. Therefore, breast reconstruction becomes an important means of postoperative patient rehabilitation. Polyvinyl alcohol hydrogel has great potential in adipose tissue engineering for breast reconstruction. However, its application is limited because of the lack of bioactive factors and poor structural stability. In this study, we prepared biodegradable polylactic acid-glycolic acid copolymer/polycaprolactone/gelatin (PPG) nanofibers. We then combined them with polyvinyl alcohol/collagen to create tissue engineering scaffolds to overcome limitations. We found that PPG fibers formed amide bonds with polyvinyl alcohol/collagen scaffolds. After chemical crosslinking, the number of amide bonds increased, leading to a significant improvement in their mechanical properties and thermal stability. The results showed that compared with pure PVA scaffolds, the maximum compressive stress of the scaffold doped with 0.9 g nanofibers increased by 500 %, and the stress loss rate decreased by 40.6 % after 10 cycles of compression. The presence of natural macromolecular gelatin and the changes in the pore structure caused by nanofibers provide cells with richer and more three-dimensional adsorption sites, allowing them to grow in three dimensions on the scaffold. So, the hydrogel scaffold by reinforcing polyvinyl alcohol hydrogel with PPG fibers is a promising breast reconstruction method.


Assuntos
Gelatina , Nanofibras , Humanos , Feminino , Gelatina/química , Engenharia Tecidual/métodos , Álcool de Polivinil/química , Nanofibras/química , Colágeno/química , Alicerces Teciduais/química , Poliésteres/química , Amidas
3.
J Nanobiotechnology ; 22(1): 74, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395929

RESUMO

Due to its unique structure, articular cartilage has limited abilities to undergo self-repair after injury. Additionally, the repair of articular cartilage after injury has always been a difficult problem in the field of sports medicine. Previous studies have shown that the therapeutic use of mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) has great potential for promoting cartilage repair. Recent studies have demonstrated that most transplanted stem cells undergo apoptosis in vivo, and the apoptotic EVs (ApoEVs) that are subsequently generated play crucial roles in tissue repair. Additionally, MSCs are known to exist under low-oxygen conditions in the physiological environment, and these hypoxic conditions can alter the functional and secretory properties of MSCs as well as their secretomes. This study aimed to investigate whether ApoEVs that are isolated from adipose-derived MSCs cultured under hypoxic conditions (hypoxic apoptotic EVs [H-ApoEVs]) exert greater effects on cartilage repair than those that are isolated from cells cultured under normoxic conditions. Through in vitro cell proliferation and migration experiments, we demonstrated that H-ApoEVs exerted enhanced effects on stem cell proliferation, stem cell migration, and bone marrow derived macrophages (BMDMs) M2 polarization compared to ApoEVs. Furthermore, we utilized a modified gelatine matrix/3D-printed extracellular matrix (ECM) scaffold complex as a carrier to deliver H-ApoEVs into the joint cavity, thus establishing a cartilage regeneration system. The 3D-printed ECM scaffold provided mechanical support and created a microenvironment that was conducive to cartilage regeneration, and the H-ApoEVs further enhanced the regenerative capacity of endogenous stem cells and the immunomodulatory microenvironment of the joint cavity; thus, this approach significantly promoted cartilage repair. In conclusion, this study confirmed that a ApoEVs delivery system based on a modified gelatine matrix/3D-printed ECM scaffold together with hypoxic preconditioning enhances the functionality of stem cell-derived ApoEVs and represents a promising approach for promoting cartilage regeneration.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Hidrogéis , Alicerces Teciduais/química , Gelatina , Células-Tronco , Hipóxia
4.
J Nanobiotechnology ; 22(1): 39, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279115

RESUMO

BACKGROUND: The design of DNA materials with specific nanostructures for biomedical tissue engineering applications remains a challenge. High-dimensional DNA nanomaterials are difficult to prepare and are unstable; moreover, their synthesis relies on heavy metal ions. Herein, we developed a bimodal DNA self-origami material with good biocompatibility and differing functions using a simple synthesis method. We simulated and characterized this material using a combination of oxDNA, freeze-fracture electron microscopy, and atomic force microscopy. Subsequently, we optimized the synthesis procedure to fix the morphology of this material. RESULTS: Using molecular dynamics simulation, we found that the bimodal DNA self-origami material exhibited properties of spontaneous stretching and curling and could be fixed in a single morphology via synthesis control. The application of different functional nucleic acids enabled the achievement of various biological functions, and the performance of functional nucleic acids was significantly enhanced in the material. Consequently, leveraging the various functional nucleic acids enhanced by this material will facilitate the attainment of diverse biological functions. CONCLUSION: The developed design can comprehensively reveal the morphology and dynamics of DNA materials. We thus report a novel strategy for the construction of high-dimensional DNA materials and the application of functional nucleic acid-enhancing materials.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Microscopia de Força Atômica , Nanotecnologia/métodos
5.
Cell Prolif ; : e13605, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282322

RESUMO

Clinicians and researchers have always faced challenges in performing surgery for rotator cuff tears (RCT) due to the intricate nature of the tendon-bone gradient and the limited long-term effectiveness. At the same time, the occurrence of an inflammatory microenvironment further aggravates tissue damage, which has a negative impact on the regeneration process of mesenchymal stem cells (MSCs) and eventually leads to the production of scar tissue. Tetrahedral framework nucleic acids (tFNAs), novel nanomaterials, have shown great potential in biomedicine due to their strong biocompatibility, excellent cellular internalisation ability, and unparalleled programmability. The objective of this research was to examine if tFNAs have a positive effect on regeneration after RCTs. Experiments conducted in a controlled environment demonstrated that tFNAs hindered the assembly of inflammasomes in macrophages, resulting in a decrease in the release of inflammatory factors. Next, tFNAs were shown to exert a protective effect on the osteogenic and chondrogenic differentiation of bone marrow MSCs under inflammatory conditions. The in vitro results also demonstrated the regulatory effect of tFNAs on tendon-related protein expression levels in tenocytes after inflammatory stimulation. Finally, intra-articular injection of tFNAs into a rat RCT model showed that tFNAs improved tendon-to-bone healing, suggesting that tFNAs may be promising tendon-to-bone protective agents for the treatment of RCTs.

6.
J Orthop Translat ; 44: 72-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38259590

RESUMO

Background: The utilization of decellularized extracellular matrix has gained considerable attention across numerous areas in regenerative research. Of particular interest is the human articular cartilage-derived extracellular matrix (hACECM), which presents as a promising facilitator for cartilage regeneration. Concurrently, the microfracture (MF) â€‹technique, a well-established marrow stimulation method, has proven efficacious in the repair of cartilage defects. However, as of the current literature review, no investigations have explored the potential of a combined application of hACECM and the microfracture technique in the repair of cartilage defects within a sheep model. Hypothesis: The combination of hACECM scaffold and microfracture will result in improved repair of full-thickness femoral condyle articular cartilage defects compared to the use of either technique alone. Study design: Controlled laboratory study. Methods: Full-thickness femoral condyle articular cartilage defect (diameter, 7.0 â€‹mm; debrided down to the subchondral bone plate) were created in the weight-bearing area of the femoral medial and lateral condyles (n â€‹= â€‹24). All of defected sheep were randomly divided into four groups: control, microfracture, hACECM scaffold, and hACECM scaffold â€‹+ â€‹microfracture. After 3, 6 and 12 months, the chondral repair was assessed for standardized (semi-) quantitative macroscopic, imaging, histological, immunohistochemical, mechanics, and biochemical analyses in each group. Result: At 3, 6 and 12 months after implantation, the gross view and pathological staining of regenerative tissues were better in the hACECM scaffold and hACECM scaffold â€‹+ â€‹microfracture groups than in the microfracture and control groups; Micro-CT result showed that the parameters about the calcified layer of cartilage and subchondral bone were better in the hACECM scaffold and hACECM scaffold â€‹+ â€‹microfracture groups than the others, and excessive subchondral bone proliferation in the microfracture group. The results demonstrate that human cartilage extracellular matrix scaffold alone is an efficient, safe and simple way to repair cartilage defects. Conclusion: hACECM scaffolds combined with/without microfracture facilitate chondral defect repair. The translational potential of this article: Preclinical large animal models represent an important adjunct and surrogate for studies on articular cartilage repair, while the sheep stifle joint reflects many key features of the human knee and are therefore optimal experimental model for future clinical application in human. In this study, we developed a human articular cartilage-derived extracellular matrix scaffold and to verify the viability of its use in sheep animal models. Clinical studies are warranted to further quantify the effects of hACECM scaffolds in similar settings.

7.
Regen Biomater ; 10: rbad085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37814675

RESUMO

The field of regenerative medicine faces a notable challenge in terms of the regeneration of articular cartilage. Without proper treatment, it can lead to osteoarthritis. Based on the research findings, human umbilical cord mesenchymal stem cells (hUMSCs) are considered an excellent choice for regenerating cartilage. However, there is still a lack of suitable biomaterials to control their ability to self-renew and differentiate. To address this issue, in this study using tetrahedral framework nucleic acids (tFNAs) as a new method in an in vitro culture setting to manage the behaviour of hUMSCs was proposed. Then, the influence of tFNAs on hUMSC proliferation, migration and chondrogenic differentiation was explored by combining bioinformatics methods. In addition, a variety of molecular biology techniques have been used to investigate deep molecular mechanisms. Relevant results demonstrated that tFNAs can affect the transcriptome and multiple signalling pathways of hUMSCs, among which the PI3K/Akt pathway is significantly activated. Furthermore, tFNAs can regulate the expression levels of multiple proteins (GSK3ß, RhoA and mTOR) downstream of the PI3K-Akt axis to further enhance cell proliferation, migration and hUMSC chondrogenic differentiation. tFNAs provide new insight into enhancing the chondrogenic potential of hUMSCs, which exhibits promising potential for future utilization within the domains of AC regeneration and clinical treatment.

8.
Acta Pharm Sin B ; 13(10): 4127-4148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799383

RESUMO

Articular cartilage (AC) injuries often lead to cartilage degeneration and may ultimately result in osteoarthritis (OA) due to the limited self-repair ability. To date, numerous intra-articular delivery systems carrying various therapeutic agents have been developed to improve therapeutic localization and retention, optimize controlled drug release profiles and target different pathological processes. Due to the complex and multifactorial characteristics of cartilage injury pathology and heterogeneity of the cartilage structure deposited within a dense matrix, delivery systems loaded with a single therapeutic agent are hindered from reaching multiple targets in a spatiotemporal matched manner and thus fail to mimic the natural processes of biosynthesis, compromising the goal of full cartilage regeneration. Emerging evidence highlights the importance of sequential delivery strategies targeting multiple pathological processes. In this review, we first summarize the current status and progress achieved in single-drug delivery strategies for the treatment of AC diseases. Subsequently, we focus mainly on advances in multiple drug delivery applications, including sequential release formulations targeting various pathological processes, synergistic targeting of the same pathological process, the spatial distribution in multiple tissues, and heterogeneous regeneration. We hope that this review will inspire the rational design of intra-articular drug delivery systems (DDSs) in the future.

9.
J Nanobiotechnology ; 21(1): 269, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574546

RESUMO

Successful biomaterial implantation requires appropriate immune responses. Macrophages are key mediators involved in this process. Currently, exploitation of the intrinsic properties of biomaterials to modulate macrophages and immune responses is appealing. In this study, we prepared hydrophilic nanofibers with an aligned topography by incorporating polyethylene glycol and polycaprolactone using axial electrospinning. We investigated the effect of the nanofibers on macrophage behavior and the underlying mechanisms. With the increase of hydrophilicity of aligned nanofibers, the inflammatory gene expression of macrophages adhering to them was downregulated, and M2 polarization was induced. We further presented clear evidence that the inflammasome NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was the cellular sensor by which macrophages sense the biomaterials, and it acted as a regulator of the macrophage-mediated response to foreign bodies and implant integration. In vivo, we showed that the fibers shaped the implant-related immune microenvironment and ameliorated peritendinous adhesions. In conclusion, our study demonstrated that hydrophilic aligned nanofibers exhibited better biocompatibility and immunological properties.


Assuntos
Inflamassomos , Nanofibras , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Interações Hidrofóbicas e Hidrofílicas
10.
iScience ; 26(8): 107433, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37575196

RESUMO

Bacterial memory refers to the phenomenon in which past experiences influence current behaviors in response to changing environments. It serves as a crucial process that enables adaptation and evolution. We first summarize the state-of-art approaches regarding history-dependent behaviors that impact growth dynamics and underlying mechanisms. Then, the phenotypic and genotypic origins of memory and how encoded memory modulates drug tolerance/resistance are reviewed. We also provide a summary of possible memory effects induced by antimicrobial nanoparticles. The regulatory networks and genetic underpinnings responsible for memory building partially overlap with nanoparticle and drug exposures, which may raise concerns about the impact of nanotechnology on adaptation. Finally, we provide a perspective on the use of nanotechnology to harness bacterial memory based on its unique mode of actions on information processing and transmission in bacteria. Exploring bacterial memory mechanisms provides valuable insights into acclimation, evolution, and the potential applications of nanotechnology in harnessing memory.

11.
Adv Sci (Weinh) ; 10(27): e2207715, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37518822

RESUMO

The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.


Assuntos
Artrite , Cartilagem Articular , Humanos , Regeneração/fisiologia , Engenharia Tecidual/métodos , Células-Tronco , Cartilagem Articular/lesões , Cartilagem Articular/fisiologia , Cicatrização
12.
ACS Appl Mater Interfaces ; 15(19): 22944-22958, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37134259

RESUMO

The regeneration and reconstruction of articular cartilage (AC) after a defect are often difficult. The key to the treatment of AC defects lies in regeneration of the defect site and regulation of the inflammatory response. In this investigation, a bioactive multifunctional scaffold was formulated using the aptamer Apt19S as a mediator for mesenchymal stem cell (MSC)-specific recruitment and the enhancement of cellular chondrogenic and inflammatory regulation through the incorporation of Mg2+. Apt19S, which can recruit MSCs in vitro and in vivo, was chemically conjugated to a decellularized cartilage extracellular matrix (ECM)-lysed scaffold. The results from in vitro experiments using the resulting scaffold demonstrated that the inclusion of Mg2+ could stimulate not only the chondrogenic differentiation of synovial MSCs but also the increased polarization of macrophages toward the M2 phenotype. Additionally, Mg2+ inhibited NLRP3 inflammasome activation, thereby decreasing chondrocyte pyroptosis. Subsequently, Mg2+ was incorporated into the bioactive multifunctional scaffold, and the resulting scaffold promoted cartilage regeneration in vivo. In conclusion, this study confirms that the combination of Mg2+ and aptamer-functionalized ECM scaffolds is a promising strategy for AC regeneration based on in situ tissue engineering and early inflammatory regulation.


Assuntos
Cartilagem Articular , Cartilagem Articular/fisiologia , Magnésio/farmacologia , Regeneração/fisiologia , Condrócitos , Engenharia Tecidual/métodos , Oligonucleotídeos , Condrogênese , Matriz Extracelular/metabolismo , Íons/metabolismo , Alicerces Teciduais
13.
Regen Biomater ; 10: rbad035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206162

RESUMO

Magnetic resonance imaging (MRI) is a promising non-invasive method to assess cartilage regeneration based on the quantitative relationship between MRI features and concentrations of the major components in the extracellular matrix (ECM). To this end, in vitro experiments are performed to investigate the relationship and reveal the underlying mechanism. A series of collagen (COL) and glycosaminoglycan (GAG) solutions at different concentrations are prepared, and T1 and T2 relaxation times are measured with or without a contrast agent (Gd-DTPA2-) by MRI. Fourier transform infrared spectrometry is also used to measure the contents of biomacromolecule-bound water and other water, allowing theoretical derivation of the relationship between biomacromolecules and the resulting T2 values. It has been revealed that the MRI signal in the biomacromolecule aqueous systems is mainly influenced by the protons in hydrogens of biomacromolecule-bound water, which we divide into inner-bound water and outer-bound water. We have also found that COL results in higher sensitivity of bound water than GAG in T2 mapping. Owing to the charge effect, GAG regulates the penetration of the contrast agent during dialysis and has a more significant effect on T1 values than COL. Considering that COL and GAG are the most abundant biomacromolecules in the cartilage, this study is particularly useful for the real-time MRI-guided assessment of cartilage regeneration. A clinical case is reported as an in vivo demonstration, which is consistent with our in vitro results. The established quantitative relation plays a critical academic role in establishing an international standard ISO/TS24560-1:2022 'Clinical evaluation of regenerative knee articular cartilage using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping' drafted by us and approved by International Standard Organization.

14.
Front Bioeng Biotechnol ; 11: 1115312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890920

RESUMO

Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.

15.
Tissue Eng Part C Methods ; 29(3): 110-120, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36921276

RESUMO

Purpose: There is still a lack of effective treatments for cartilage damage. Cartilage tissue engineering could be a promising treatment method. Human umbilical cord Wharton's jelly (HUCWJ) and hydrogels have received wide attention as a scaffold for tissue engineering. They have not been widely used in clinical studies as their effectiveness and safety are still controversial. This study systematically compared the ability of these two biological tissue engineering materials to carry chondrocytes to repair cartilage injury in vivo. Methods: Chondrocytes were cocultured with HUCWJ or hydrogel for in vivo transplantation. The treatments comprised the HUCWJ+cell, hydrogel+cell, and blank groups. A rabbit model with articular cartilage defect in the knee joint area was established. The defective knee cartilage of different rabbit groups was treated for 3 and 6 months. The efficacy of the various treatments on articular cartilage injury was evaluated by immunohistochemistry and biochemical indices. Results: We found that the HUCWJ+cell and hydrogel+cell groups promoted cartilage repair compared with the blank group, which had no repair effect. The treatment efficacy of each group at 6 months was significantly better than that at 3 months. HUCWJ showed accelerated cartilage repair ability than the hydrogel. Conclusion: This study showed that HUCWJ is useful in cartilage tissue engineering to enhance the efficacy of chondrocyte-based cartilage repair, providing new insights for regenerative medicine. Impact statement Human umbilical cord Wharton's jelly (HUCWJ) and hydrogel are the suitable extracellular matrix for cartilage tissue engineering. This study assessed the capacity of HUCWJ- and hydrogel-loaded chondrocytes to repair cartilage injury in vivo. The data demonstrate that both HUCWJ and hydrogel effectively facilitated cartilage repair, and the repair effects of HUCWJ were significantly better compared with hydrogel, therefore providing a potential candidate for clinical practice of cartilage regeneration therapy.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Geleia de Wharton , Animais , Humanos , Coelhos , Condrócitos , Hidrogéis/farmacologia , Alicerces Teciduais , Cordão Umbilical , Engenharia Tecidual/métodos
16.
Mater Today Bio ; 19: 100549, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36756208

RESUMO

Improving the poor microenvironment in the joint cavity has potential for treating cartilage injury, and mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos), which can modulate cellular behavior, are becoming a new cell-free therapy for cartilage repair. Here, we used acellular cartilage extracellular matrix (ACECM) to prepare 3D scaffolds and 2D substrates by low-temperature deposition modeling (LDM) and tape casting. We aimed to investigate whether MSC-Exos cultured on scaffolds of different dimensions could improve the poor joint cavity microenvironment caused by cartilage injury and to explore the related mechanisms. In vitro experiments showed that exosomes derived from MSCs cultured on three-dimensional (3D) scaffolds (3D-Exos) had increased efficiency. In short-term animal experiments, compared with exosomes derived from MSCs cultured in a two-dimensional (2D) environment (2D-Exos), 3D-Exos had a stronger ability to regulate the joint cavity microenvironment. Long-term animal studies confirmed the therapeutic efficacy of 3D-Exos over 2D-Exos. Thus, 3D-Exos were applied in the rat knee osteochondral defect model after adsorption in the micropores of the scaffold and combined with subsequent articular cavity injections, and they showed a stronger cartilage repair ability. These findings provide a new strategy for repairing articular cartilage damage. Furthermore, miRNA sequencing indicated that the function of 3D-Exos may be associated with high expression of miRNAs. Thus, our study provides valuable insights for the design of 3D-Exos to promote cartilage regeneration.

17.
Biomater Res ; 27(1): 7, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739446

RESUMO

BACKGROUND: In recent years, there has been significant research progress on in situ articular cartilage (AC) tissue engineering with endogenous stem cells, which uses biological materials or bioactive factors to improve the regeneration microenvironment and recruit more endogenous stem cells from the joint cavity to the defect area to promote cartilage regeneration. METHOD: In this study, we used ECM alone as a bioink in low-temperature deposition manufacturing (LDM) 3D printing and then successfully fabricated a hierarchical porous ECM scaffold incorporating GDF-5. RESULTS: Comparative in vitro experiments showed that the 7% ECM scaffolds had the best biocompatibility. After the addition of GDF-5 protein, the ECM scaffolds significantly improved bone marrow mesenchymal stem cell (BMSC) migration and chondrogenic differentiation. Most importantly, the in vivo results showed that the ECM/GDF-5 scaffold significantly enhanced in situ cartilage repair. CONCLUSION: In conclusion, this study reports the construction of a new scaffold based on the concept of in situ regeneration, and we believe that our findings will provide a new treatment strategy for AC defect repair.

18.
Biomater Sci ; 11(8): 2759-2774, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36810435

RESUMO

Meniscus injury has a limited ability to heal itself and often results in the progression to osteoarthritis. After a meniscus injury, there is an obvious acute or chronic inflammatory response in the articular cavity, which is not conducive to tissue regeneration. M2 macrophages are involved in tissue repair and remodeling. Regenerative medicine strategies for tissue regeneration by enhancing the phenotypic ratio of M2 : M1 macrophages have been demonstrated in a variety of tissues. However, there are no relevant reports in the field of meniscus tissue regeneration. In this study, we confirmed that sodium tanshinone IIA sulfonate (STS) could transform macrophages from M1 to M2 polarization. STS protects meniscal fibrochondrocytes (MFCs) against the effects of macrophage conditioned medium (CM). Moreover, STS attenuates interleukin (IL)-1ß-induced inflammation, oxidative stress, apoptosis, and extracellular matrix (ECM) degradation in MFCs, possibly by inhibiting the interleukin-1 receptor-associated kinase 4 (IRAK4)/TNFR-associated factor 6 (TRAF6)/nuclear factor-kappaB (NF-κB) signaling pathway. An STS loaded polycaprolactone (PCL)-meniscus extracellular matrix (MECM) based hydrogel hybrid scaffold was fabricated. PCL provides mechanical support, the MECM based hydrogel provides a microenvironment conducive to cell proliferation and differentiation, and STS is used to drive M2 polarization and protect MFCs against the effects of inflammatory stimuli, thus providing an immune microenvironment conducive to regeneration. The results of subcutaneous implantation in vivo showed that hybrid scaffolds could induce M2 polarization in the early stage. In addition, the hybrid scaffolds seeded with MFCs could achieve good meniscus regeneration and chondroprotective effects in rabbits.


Assuntos
Hidrogéis , Menisco , Animais , Coelhos , Hidrogéis/metabolismo , Macrófagos , Inflamação/metabolismo , Fenótipo
19.
Orthop Surg ; 15(2): 549-562, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36650102

RESUMO

OBJECTIVE: Cartilage defect is a common pathology still lacking a unified treating option. The purpose of this retrospective study is to evaluate the safety, efficacy, and clinical and radiological outcome of cartilage restoration of knee joint with allogenic next-generation Matrix-Induced Autologous Chondrocyte Implantation (MACI) for the first time, as well as the correlation between postoperative clinical and radiological outcomes and preoperative patient history and demographics. METHODS: From July 2014 to August 2020, 15 patients who went through cartilage restoration with allogenic next-generation MACI were included in this study. Patient demographics and PROM including the International Knee Documentation Committee (IKDC) subjective knee score, Lysholm score, Tegner Activity Scale (TAS), and Knee Injury and Osteoarthritis Outcome Score (KOOS) were obtained preoperatively, at 3, 6, 12 months postoperatively and the last follow-up using an online questionnaire platform. MOCART 2.0 score was calculated at the last follow-up. Analysis of variance (ANOVA) was used to compare PROM pre- and post-operation, with two-tailed p < 0.05 defined as statistical significant. Pearson correlation coefficient was used to evaluate correlation between the PROM and MOCART 2.0 score at the last follow-up with patients demorgraphics. RESULTS: All patients were followed for an average of 66.47 ± 24.15 months (range, 21-93). All patients were satisfied with the outcome of the surgery and no complication was reported at the end of the study. No significant improvement was observed until 1 year after the implantation, except for IKDC score at 6 months. All PROM showed significant improvement 1 year post-op except for Lysholm score and TAS, which also increased significantly at the time of the last follow-up. Pearson correlation coefficient showed that the size of the defect, before or after debridement, was significantly negatively correlated with final KOOS-Pain (before debridement: r = -0.57, p < 0.05; after debridement: r = -0.54, p < 0.05) and KOOS-Symptoms score (before debridement: r = -0.66, p < 0.05; after debridement: r = -0.67, p < 0.05). The MOCART 2.0 score was found significantly and negatively correlated with BMI (r = -0.60, p < 0.05), and significantly and positively correlated with Lysholm score (r = 0.70, p < 0.05). CONCLUSION: The next generation MACI with autologous chondrocyte and allogenic chondrocyte ECM scaffold could be used to treat focal articular cartilage defect in the knee joint safely and efficiently with lasting promising outcomes for more than 5 years. The size of the defects should be considered the most negatively correlated parameters influencing the postoperative clinical outcomes.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Condrócitos/transplante , Seguimentos , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Transplante Autólogo , Articulação do Joelho/cirurgia , Cartilagem Articular/cirurgia , Cartilagem Articular/lesões
20.
Arthroscopy ; 39(2): 371-372, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604003

RESUMO

The goal of meniscal tissue engineering is tissue remodeling and functional recovery. Autologous, tissue-engineered adipose-derived stem cell (ADSC) sheets promote meniscal regeneration in rabbit meniscal defects in vivo. Moreover, compared with a control group, in the ADSC sheet model, both histologic scores and gene expression are more similar to normal meniscal tissue. ADSC sheets promote meniscal regeneration regardless of whether the defect involves the whole width or inner half of a meniscal defect. Mechanical properties are also important, and experimental data show encouraging mechanical properties of meniscus tissue reconstructed from ADSC sheets. Cell sheet technology is a promising therapeutic strategy for meniscal regenerative medicine and tissue engineering. Theoretically, cell sheet transplantation could result in superior outcomes to traditional cell-free scaffolds, and further research is needed before clinical application.


Assuntos
Menisco , Animais , Coelhos , Engenharia Tecidual , Regeneração , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...