Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 23(8): 2038-2049, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27683179

RESUMO

Purpose: Antiproliferative, antiviral, and immunomodulatory activities of endogenous type I IFNs (IFN1) prompt the design of recombinant IFN1 for therapeutic purposes. However, most of the designed IFNs exhibited suboptimal therapeutic efficacies against solid tumors. Here, we report evaluation of the in vitro and in vivo antitumorigenic activities of a novel recombinant IFN termed sIFN-I.Experimental Design: We compared primary and tertiary structures of sIFN-I with its parental human IFNα-2b, as well as affinities of these ligands for IFN1 receptor chains and pharmacokinetics. These IFN1 species were also compared for their ability to induce JAK-STAT signaling and expression of the IFN1-stimulated genes and to elicit antitumorigenic effects. Effects of sIFN-I on tumor angiogenesis and immune infiltration were also tested in transplanted and genetically engineered immunocompetent mouse models.Results: sIFN-I displayed greater affinity for IFNAR1 (over IFNAR2) chain of the IFN1 receptor and elicited a greater extent of IFN1 signaling and expression of IFN-inducible genes in human cells. Unlike IFNα-2b, sIFN-I induced JAK-STAT signaling in mouse cells and exhibited an extended half-life in mice. Treatment with sIFN-I inhibited intratumoral angiogenesis, increased CD8+ T-cell infiltration, and robustly suppressed growth of transplantable and genetically engineered tumors in immunodeficient and immunocompetent mice.Conclusions: These findings define sIFN-I as a novel recombinant IFN1 with potent preclinical antitumorigenic effects against solid tumor, thereby prompting the assessment of sIFN-I clinical efficacy in humans. Clin Cancer Res; 23(8); 2038-49. ©2016 AACR.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Interferon-alfa/química , Interferon-alfa/farmacologia , Animais , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Interferon alfa-2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Ressonância de Plasmônio de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nucleic Acids Res ; 35(18): 6297-310, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17878217

RESUMO

Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y. The disease-causing mutants had low ATPase and helicase activities but their ATP binding abilities were normal, except for Q672, whose ATP binding activity was lower than that of the intact BLM helicase. Mutants C878R, mapping near motif IV, and G891E and C901Y, mapping in motif IV, displayed severe DNA-binding defects. We used molecular modelling to analyse these mutations. Our work provides insights into the molecular basis of BLM pathology, and reveals structural elements implicated in coupling DNA binding to ATP hydrolysis and DNA unwinding. Our findings will help to explain the mechanism underlying BLM catalysis and interpreting new BLM causing mutations identified in the future.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Síndrome de Bloom/genética , DNA Helicases/química , DNA Helicases/genética , Mutação de Sentido Incorreto , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , DNA/metabolismo , DNA Helicases/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , RecQ Helicases
3.
Cell Cycle ; 5(15): 1681-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880735

RESUMO

Bloom syndrome (BS) is a rare human autosomal recessive disorder characterized by marked genetic instability associated with greatly increased predisposition to a wide range of cancers affecting the general population. BS arises through mutations in both copies of the BLM gene which encodes a 3'-5' DNA helicase identified as a member of the RecQ family. Several studies support a major role for BLM in the cellular response to DNA damage and stalled replication forks. However, the specific function(s) of BLM remain(s) unclear. The BLM protein is strongly expressed and phosphorylated during mitosis, but very little information is available about the origin and the significance of this phosphorylation. We show here that ATM kinase provides only a limited contribution to the mitotic phosphorylation of BLM. We also demonstrate that BLM is directly phosphorylated at multiple sites in vitro by the mitotic cdc2 kinase, and identify two new sites of mitotic BLM phosphorylation: Ser-714 and Thr-766. Our results identify BLM helicase as a new substrate for cdc2, which may have potential physiological implications for the role of BLM in mitosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteína Quinase CDC2/metabolismo , DNA Helicases/metabolismo , Mitose , Adenosina Trifosfatases/química , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Modelos Genéticos , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RecQ Helicases , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...