Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(34): 12785-12793, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37565453

RESUMO

Studies on the adverse effects of nanoplastics (NPs, particle diameter <1000 nm) including physical damage, oxidative stress, impaired cell signaling, altered metabolism, developmental defects, and possible genetic damage have intensified in recent years. However, the analytical detection of NPs is still a bottleneck. To overcome this bottleneck and obtain a reliable and quantitative distribution analysis in complex freshwater ecosystems, an easily applicable NP tracer to simulate their fate and behavior is needed. Here, size- and surface charge-tunable core-shell Au@Nanoplastics (Au@NPs) were synthesized to study the environmental fate of NPs in an artificial freshwater system. The Au core enables the quantitative detection of NPs, while the polystyrene shell exhibits NP properties. The Au@NPs showed excellent resistance to environmental factors (e.g., 1% hydrogen peroxide solution, simulating gastric fluid, acids, and alkalis) and high recovery rates (>80%) from seawater, lake water, sewage, waste sludge, soil, and sediment. Both positively and negatively charged NPs significantly inhibited the growth of duckweed (Lemna minor L.) but had little effect on the growth of cyanobacteria (Microcystis aeruginosa). In addition, the accumulation of positively and negatively charged NPs in cyanobacteria occurred in a concentration-dependent manner, with positively charged NPs more easily taken up by cyanobacteria. In contrast, negatively charged NPs were more readily internalized in duckweed. This study developed a model using a core-shell Au@NP tracer to study the environmental fate and behavior of NPs in various complex environmental systems.


Assuntos
Cianobactérias , Microplásticos , Bioacumulação , Ecossistema , Água Doce , Água do Mar , Poliestirenos
2.
Chemosphere ; 336: 139194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315858

RESUMO

The environmental issues caused by nanoplastics (NPs) are increasingly noticeable. Environmental behavior study of the NPs could provide vital information for their environmental impact assessment. However, associations between NPs' inherent properties and their sedimentation behaviors were seldom investigated. In this study, six types of PSNPs (polystyrene nanoplastics) with different charges (positive and negative) and particle sizes (20-50 nm, 150-190 nm and 220-250 nm) were synthesized, and their sedimentations under different environmental factors, (e.g., pH value, ionic strength (IS), electrolyte type and natural organic matter) were investigated. Results displayed that both particle size and surface charge would affect the sedimentation of PSNPs. The maximum sedimentation ratio of 26.48% was obtained in positive charged PSNPs with size of 20-50 nm, while the minimum sedimentation ratio of 1.02% was obtained in negative charged PSNPs with size of 220-250 nm at pH 7.6. The pH value shift (range of 5-10) triggered negligible changes of sedimentation ratio, the average particle size and the Zeta potential. Small size PSNPs (20-50 nm) showed higher sensitivity to IS, electrolyte type and HA condition than large size PSNPs. At high IS value ( [Formula: see text]  = 30 mM or ISNaCl = 100 mM), the sedimentation ratios of the PSNPs all increased differently according to their properties, and the sedimentation promoting effect of CaCl2 was more significant on negative charged PSNPs than positive charged PSNPs. When [Formula: see text] increased from 0.9 to 9 mM, the sedimentation ratios of negative charged PSNPs increased by 0.53%-23.49%, while that of positive charged PSNPs increased by less than 10%. Besides, humic acid (HA) addition (1-10 mg/L) would lead to a stable suspension status for PSNPs in water with different degree and perhaps different mechanism due to their charge characteristics. These results showed new light on influence factor studies of NPs' sedimentation and would be helpful for further knowledge of NPs' environmental behaviors.


Assuntos
Microplásticos , Poliestirenos , Poliestirenos/química , Concentração Osmolar , Água Doce , Substâncias Húmicas , Eletrólitos
3.
Bioresour Technol ; 359: 127454, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35697261

RESUMO

Humic acids (HAs) are abundant on earth, yet their effects on anaerobic digestion (AD) of cellulosic substrate are not fully uncovered. The effects of HAs on AD of corn straw and the mechanisms behind were analyzed in this study. Results showed that the effects of HAs on methane yield were closely related to the total solids (TS) content. At relative high TS content of 5.0%, HAs benefited AD process by increasing 13.8% of methane yield, accelerating methane production rate by 43% and shortening lag phase time by 37.5%. Microbial community analysis indicated that HAs increased the relative abundance of syntrophic bacteria (Syntrophomonadaceae and Synergistaceae), facilitating the degradation of volatile fatty acids. HAs might act as electron shuttles to directly transfer electrons to hydrogenotrophic methanogens for CO2 reduction to CH4. This study provides a simple and efficient strategy to facilitate the AD of cellulosic substrate by HAs addition.


Assuntos
Reatores Biológicos , Zea mays , Anaerobiose , Bactérias , Substâncias Húmicas , Metano
4.
Sci Total Environ ; 818: 151762, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800454

RESUMO

Using a batch anaerobic system constructed with 60 mL serum bottles, potential of a composite material with Fe2O3 nanoparticles decorated on carbon nanotubes (CNTs) to enhance biomethane production was investigated. The composites (Fe2O3@CNTs) with well dispersed Fe2O3 nanoparticles (4.5 nm) were fabricated by a facile thermal decomposition method in a muffle furnace under nitrogen atmosphere. Compared with Fe2O3, Fe2O3@CNTs showed a large specific surface area and good electrical conductivity. Supplementation of Fe2O3@CNTs to the propionate-degrading enrichments enhanced the methane production rate, which was 10.4-fold higher than that in the control experiment without material addition. The addition of Fe2O3@CNTs also not only showed a clearly electrochemical response to flavin and cytochrome C, but also reduced the electron transfer resistance when compared to the control. Comparative analysis showed that Fe2O3 in Fe2O3@CNTs played a key role in initiating electrochemical response and triggering rapid methane production, while CNTs functioned as rapid electron conduits to facilitate electron transfer from iron-reducing bacteria (e.g., Acinetobacter, Syntrophomonas, and Geobacter) to methanogens (e.g. Methanosarcina).


Assuntos
Nanotubos de Carbono , Propionatos , Transporte de Elétrons , Metano , Methanosarcina
5.
Environ Sci Pollut Res Int ; 27(27): 33732-33742, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535820

RESUMO

Anaerobic digested residue (DR) is the main by-product from biogas plants, and it is predominantly used as organic fertilizer after composting. To resolve the problems of long duration and nitrogen loss in conventional composting, bulking agents are always added during the composting process. In this study, oyster shell (OS) was used as a bulking agent for DR composting. Four treatments were conducted by mixing DR and OS at different concentrations (0%, 10%, 20% and 30%, based on wet weight) and then composting the mixtures for 40 days. The results showed that the organic matter (OM) degradation efficiency was enhanced by 5.62%, 12.15% and 16.98% with increasing amounts of OS addition. The increased content of microbial biomass carbon in the compost indicated a suitable living environment for aerobic microbes with added OS, which could explain the increased OM degradation efficiency. Compared with the control, the NH3 emissions in the treatments with 10%, 20% and 30% OS were decreased by 13.81%, 33.33% and 53.76%, respectively. The increase in total nitrogen content in the compost is probably due to the absorption of NH3 by OS. Results indicated that OS is a suitable bulking agent for DR composting and that the addition of 20-30% OS can significantly enhance composting performance.


Assuntos
Compostagem , Ostreidae , Anaerobiose , Animais , Fertilizantes , Esterco , Nitrogênio/análise , Solo
6.
J Environ Manage ; 269: 110737, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32425164

RESUMO

In sustaining the soil quality, soil salinization has become a major challenge due to the increasing salinity rate of 10% annually. Despite, the serious concerns, the influence of soil amendments on microbial communities and its related attributes have limited findings. Therefore, the present study aims to investigate the potential of three various biochars, digestate (DI), and its compost (COM) in reclamation of saline soil under closed ecosystem. The decrease in the pH was displayed by lignite char, and electrical conductivity by lignite char plus COM addition among all the treatments. The subside in Na +, with a significant rise in K +, was exhibited in soils amended with DI plus DI biochar as a combined ameliorate over control. The negative priming effects on native soil organic carbon (nSOC) due to the decreased substrate bioavailability, in corn straw and DI biochars ameliorates were noted. The urease and alkaline phosphatase activity were pronounced higher in COM. However, the catalase and fluorescein diacetate activity were greater in lignite char plus DI and COM respectively. The co-addition of biochar and organic substrates shifted microbial community, is in correspondence with the relative abundance of the phylum. Overall, the abundance of Firmicutes and Actinobacteria was higher in soils under a combination of lignite char with DI and COM respectively. Likely, the abundance of Euryarchaeota was dominant in the co-application of corn straw biochar and DI. Redundancy analysis revealed the intactness between bacterial genera and their metabolisms with K +, and Mg 2+. PICRUSt disclosed the enhanced metabolic functions in soil with amalgam of DI and its biochar. The findings showed that the application of DI and its biochar mixture, as an amendment could be a better approach in the long-term reclamation of saline soil.


Assuntos
Microbiota , Solo , Carbono , Carvão Vegetal , Microbiologia do Solo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32391347

RESUMO

Methane is a greenhouse gas and significantly contributes to global warming. Methane biofiltration with immobilized methane-oxidizing bacteria (MOB) is an efficient and eco-friendly approach for methane elimination. To achieve high methane elimination capacity (EC), it is necessary to use an exceptional support material to immobilize MOB. The MOB consortium was inoculated in biofilters to continuusly eliminate 1% (v/v) of methane. Results showed that the immobilized MOB cells outperformed than the suspended MOB cells. The biofilter packed with fly ash ceramsite (FAC) held the highest average methane EC of 4.628 g h-1 m-3, which was 33.4% higher than that of the biofilter with the suspended MOB cells. The qPCR revealed that FAC surface presented the highest pmoA gene abundance, which inferred that FAC surface immobilized the most MOB biomass. The XPS and contact angle measurement indicated that the desirable surface elemental composition and stronger surface hydrophilicity of FAC might favor MOB immobilization and accordingly improve methane elimination.

8.
Bioresour Technol ; 302: 122829, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32028147

RESUMO

The existence of CO2 in biogas will affect its practicality, so the methanation of CO2 is of great significance. Carrier materials play a key role in bioconversion of CO2 to methane during biogas upgrading. Herein, different materials were used to evaluate the bioconversion process of CO2 to methane, which consisted of black ceramsite (BC) and biochars prepared from corn straw and digestate. The results showed that after adding the carrier materials, the methane production rate increased by more than 20%, and the corn straw biochar (CSB) group even increased by more than 70%. This may be attributed to the large specific surface area and more functional groups in corn straw biochar which was suitable for the immobilization of hydrogenotrophic methanogens (HMs). Therefore, corn straw biochar is a good carrier material for the accelerated bioconversion of CO2 to methane.


Assuntos
Reatores Biológicos , Euryarchaeota , Biocombustíveis , Carvão Vegetal , Metano
9.
J Hazard Mater ; 388: 121742, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796347

RESUMO

Oil shale semi-coke is the solid waste produced from the retorting process of oil shale, which may cause pollution to the environment without reasonable disposing. In this study, semi-coke was used as the bulking agent during composting to accelerate biodegradation of the organics as well as decrease the nitrogen loss. Results showed that the addition of semi-coke could accelerate biodegradation of the organics, with a raise in the organic matter loss from 44.99 % to 47.05 % compared with the control. Furthermore, the nitrogen loss significantly decreased from 40.00%-14.70 % in the treatment added with semi-coke due to less emission of NH3 and much more transformation of NH4+-N to NO3--N by nitrification, which could be explained by the increasing abundance of ammonia-oxidizing bacteria and archaea at the late composting stage and drastic shift of the microbial community like Chloroflexi, Firmicutes and Actinobacteria. After the composting cycle, the maturity of the produced compost was elevated greatly in the treatments amended with semi-coke. The result of PAHs detection suggested that there were low PAHs content in the raw oil shale semi-coke and they could be removed effectively to within the range for land application by composting especially when the surfactant was added.


Assuntos
Coque/análise , Compostagem/métodos , Esterco/microbiologia , Nitrogênio/análise , Resíduos Sólidos , Actinobacteria/metabolismo , Aerobiose , Biodegradação Ambiental , Firmicutes/metabolismo , Nitrificação , Hidrocarbonetos Policíclicos Aromáticos/análise
10.
Bioresour Technol ; 294: 122044, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520859

RESUMO

This study aimed to investigate variations of bacterial community and functional characteristics during the continuous thermophilic composting (CTC). Also their differences were discussed when amended with ceramsite and recycled ceramsite as the porous bulking agent. Results showed that the bacterial community shifted greatly and bacterial diversity increased as the CTC proceeded. Firmicutes and Chloroflexi was one of the major phyla at the active and late phase respectively. While Actinobacteria was the dominant phyla during the whole CTC. With the addition of ceramsite and recycled ceramsite, no significant difference was found of the overall bacterial variation trends. But the major phyla of Chloroflexi and Actinobacteria and major genes related to amino acid metabolism and carbohydrate metabolism increased significantly, especially when the recycled ceramsite was added. Redundancy analysis indicated that the succession of bacterial community was tightly related with the pH, water soluble organic carbon, NH4+-N, organic matter and germination index.


Assuntos
Compostagem , Bactérias , Carbono , Esterco , Reciclagem , Solo
11.
Sci Total Environ ; 655: 915-923, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30481718

RESUMO

Methane is a greenhouse gas with significant global warming potential. The methane-oxidizing bacteria (MOB) immobilized on biocarrier could perform effectively and environmentally in methane elimination. To further improve the efficiencies of MOB immobilization and methane elimination, the surface biocompatibility of biocarrier needs to be improved. In this work, the oil shale semicoke (SC) was chemically modified by sodium p-styrenesulfonate hydrate (SS) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (DMC) to promote surface hydrophilicity and positive charge, respectively. Results revealed that, under methane concentrations of ~10% (v/v) and ~0.5% (v/v), the MOB immobilized on semicoke modified with 1.0 mol L-1 of SS permitted improved methane elimination capacities (ECs), which were 15.02% and 11.11% higher than that on SC, respectively. Additionally, under methane concentrations of ~10% (v/v) and ~0.5% (v/v), the MOB immobilized on semicoke modified with 0.4 mol L-1 of DMC held superior ECs, which were 17.88% and 11.29% higher than that on SC, respectively. The qPCR analysis indicated that the MOB abundance on modified semicoke were higher than that on SC. In consequence, the surface biocompatibility of semicoke could be promoted by SS and DMC modifications, which potentially provided methods for other biocarriers to improve surface biocompatibility.


Assuntos
Poluentes Atmosféricos/metabolismo , Coque/análise , Metano/metabolismo , Methylococcaceae/metabolismo , Metacrilatos , Oxirredução , Poliestirenos/química
13.
Bioresour Technol ; 256: 201-207, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29448156

RESUMO

Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal.


Assuntos
Biocombustíveis , Metano , Methylococcaceae , Oxirredução , Emissões de Veículos
14.
Bioresour Technol ; 235: 292-300, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28371767

RESUMO

Macroalgae biomass has been considered as a promising feedstock for biogas production. In order to improve the efficiency of anaerobic digestion (AD) of macroalgae, semi-continuous fermentation was conducted to examine the effects of organic loading rate (OLR) on biogas production from Macrocystis pyrifer. Results showed that, under OLRs of 1.37, 2.74, 4.12 and 6.85kgVSsubstrate/(m3·d), the average unit biogas yields were 438.9, 477.3, 480.1 and 188.7mL/(gVSsubstrated), respectively. It indicated that biogas production was promoted by the increased OLR in an appropriate range while inhibited by the OLR beyond the appropriate range. The investigation on physical-chemical parameters revealed that unfavorable VFAs concentration, pH and salinity might be the main causes for system failure due to the overrange OLR, while the total phenols failed to reach the inhibitory concentration. Microbial community analysis demonstrated that several bacterial and archaeal phyla altered with increase in OLR apparently.


Assuntos
Biocombustíveis , Alga Marinha , Anaerobiose , Archaea , Biomassa , Reatores Biológicos/microbiologia , Fermentação
15.
Bioresour Technol ; 231: 124-128, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254343

RESUMO

Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 0.13molh-1m-3, which was more 4 times higher than that of MOB without immobilization.


Assuntos
Biocombustíveis , Methylococcaceae , Metano , Emissões de Veículos
16.
Bioresour Technol ; 204: 145-151, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773949

RESUMO

Anaerobic digestion (AD) of microalgal biomass is one of the most energy efficient technologies to convert microalgae to biofuels. In order to improve the biogas productivity, breaking up the tough and rigid cell wall of microalgae by pretreatment is necessary. In this work, Bacillus licheniformis, a facultative anaerobic bacterial with hydrolytic and acidogenic activities, was adopted to pretreat Chlorella sp. In the established pretreatment process, pure bacterial culture (0%, 1%, 2%, 4%, 8%, v/v) were used to pretreat Chlorella sp. under anaerobic condition at 37°C for 60 h. The soluble chemical oxygen demands (SCOD) content was increased by 16.4-43.4%, while volatile fatty acids (VFAs) were improved by 17.3-44.2%. Furthermore, enhancement of methane production (9.2-22.7%) was also observed in subsequent AD. The results indicated that the more dosages of bacteria were used to pretreat the microalgal biomass in the range of 1-8%, the more methane was produced.


Assuntos
Biocombustíveis , Clorófitas/metabolismo , Metano/metabolismo , Microalgas/metabolismo , Anaerobiose , Bacillus licheniformis/metabolismo , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos , Ácidos Graxos Voláteis , Hidrólise
18.
Bioresour Technol ; 198: 497-502, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433149

RESUMO

Thermophilic microaerobic pretreatment (TMP) was recently reported as an efficient pretreatment method of anaerobic digestion (AD). In this study, the chemical properties and microbial community were characterized to reveal how TMP working. Compared with thermophilic treatment under anaerobic condition (TMP0), cellulase activity obviously improved under microaerobic condition (TMP1), which was 10.9-49.0% higher than that of TMP0. Reducing sugar, SCOD and VFAs concentrations of TMP1 were 2.6-8.9%, 1.8-4.8% and 13.8-24% higher than those of TMP0, respectively. TMP gave obvious rise to phylum Firmicutes, which associated with extracellular enzymes production. The proportion of class Bacilli (belongs to phylum Firmicutes and mainly acts during hydrolysis) in TMP1 was 124.89% higher than that of TMP0, which reflected the greater hydrolytic ability under microaerobic condition. The improved abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) under microaerobic condition could be the fundamental reason for the improved AD performance of thermophilic microaerobic pretreated corn straw.


Assuntos
Biotecnologia/métodos , Metano/biossíntese , Consórcios Microbianos/fisiologia , Zea mays , Aerobiose , Anaerobiose , Bacillaceae/fisiologia , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Biotecnologia/instrumentação , Celulases/química , Celulases/metabolismo , Ácidos Graxos Voláteis/metabolismo , Hidrólise , Brotos de Planta/química , Brotos de Planta/metabolismo , Zea mays/química , Zea mays/metabolismo
19.
Huan Jing Ke Xue ; 36(1): 357-64, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-25898687

RESUMO

Batch experiments were conducted to analyze the effects of pretreatment conditions, inoculum-substrate ratio (ISR) and initial pH on the hydrogen and volatile fatty acid (VFA) production from anaerobic digestion of Macrocystis pyrifera biomass. The results indicated that M. pyrifera could produce hydrogen and VFA simultaneously. In addition, thermo-alkaline pretreatment was proved as the best method for hydrogen and VFA production. The optimal pretreatment conditions, ISR, initial pH value were determined as thermal-alkaline pretreatment at 100 degrees C with 4 g x L(-1) NaOH, 0.3 and 6, respectively. Under these conditions, the maximum hydrogen production was 36.21 mL x g(-1) per unit volatile solids, which resulted in 77.82% improvement compared with the yield from untreated M. pyrifera. Furthermore, the TVFA yield under the optimal conditions was found to be 0.15 g x g(-1) per unit volatile solids and the VFAs mainly consisted of acetate and butvrate


Assuntos
Ácidos Graxos Voláteis/biossíntese , Hidrogênio/metabolismo , Macrocystis/metabolismo , Acetatos , Anaerobiose , Biomassa , Fermentação
20.
Bioresour Technol ; 186: 321-324, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818257

RESUMO

Thermophilic microaerobic pretreatment (TMP) has been proved to be an alternative pretreatment method during anaerobic digestion (AD) of corn straw. In this study, in order to improve the fermentation efficiency during late AD stage, improve the methane yield and volatile solid (VS) removal efficiency, a secondary thermophilic microaerobic treatment (STMT) was applied in the late AD stage of corn straw. Results showed STMT obviously improved the fermentation efficiency, methane yield and VS removal efficiency. The maximum methane yield and maximum VS removal efficiency were simultaneously obtained when the oxygen loads during STMT was 10 ml/g VS (VS of residual substrate). The maximum methane yield was 380.6 ml/g VS(substrate), which was 28.45% and 10.61% higher than those of untreated and once thermophilic microaerobic pretreated samples, respectively. The maximum VS removal efficiency was 81.85%, which was 29.43% and 17.23% higher than those of untreated and once thermophilic microaerobic pretreated samples, respectively.


Assuntos
Bactérias Anaeróbias/metabolismo , Biocombustíveis , Biotecnologia/métodos , Metano/biossíntese , Caules de Planta/metabolismo , Zea mays/metabolismo , Bactérias Aeróbias/metabolismo , Biotecnologia/estatística & dados numéricos , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...