Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38712484

RESUMO

The rapid growth in computational power, sensor technology, and wearable devices has provided a solid foundation for all aspects of cardiac arrhythmia care. Artificial intelligence (AI) has been instrumental in bringing about significant changes in the prevention, risk assessment, diagnosis, and treatment of arrhythmia. This review examines the current state of AI in the diagnosis and treatment of atrial fibrillation, supraventricular arrhythmia, ventricular arrhythmia, hereditary channelopathies, and cardiac pacing. Furthermore, ChatGPT, which has gained attention recently, is addressed in this paper along with its potential applications in the field of arrhythmia. Additionally, the accuracy of arrhythmia diagnosis can be improved by identifying electrode misplacement or erroneous swapping of electrode position using AI. Remote monitoring has expanded greatly due to the emergence of contactless monitoring technology as wearable devices continue to develop and flourish. Parallel advances in AI computing power, ChatGPT, availability of large data sets, and more have greatly expanded applications in arrhythmia diagnosis, risk assessment, and treatment. More precise algorithms based on big data, personalized risk assessment, telemedicine and mobile health, smart hardware and wearables, and the exploration of rare or complex types of arrhythmia are the future direction.

2.
Materials (Basel) ; 17(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473500

RESUMO

The number of fires in buildings and on bridges has increased worldwide in recent years. As a structural material, the strength of alkali-activated slag (AAS) concrete after exposure to high temperatures has been given much attention. However, research of its durability is still lacking, which limits the application of this type of concrete on a larger scale. In this context, as one of the most important aspects of durability, the chloride permeability of AAS concretes after exposure to high temperatures was examined in this study. The influence of the alkali concentration (Na2O%) and the modulus (Ms) of the activator, as well as the influence of heating regimes, including the heating rate, duration of exposure to the target temperature, and cooling method, was also discussed. The results show that the chloride permeability of the AAS concretes increased with temperature elevation. Due to the interference of pore solution conductivity, the influence of the Na2O% and the Ms of the activator on the chloride permeability of the AAS concretes was not made clear by using the ASTM C 1202 charge passed method; however, after exposure to high temperatures, AAS with a lower Na2O% and lower Ms has lower porosity and may have lower chloride permeability, which needs further investigation. Faster heating for a longer duration at the target temperature and water cooling reduced the resistance of the AAS concretes to chloride permeability as a result of their increased porosity.

3.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473609

RESUMO

In recent years, significant attention has been paid to the use of calcium sulfate whiskers (CSWs) to enhance the performance of cement-based materials (CBM). This technology has attracted widespread interest from researchers because it enhances the performance and sustainability of CBM by modifying the crystal structure of calcium sulfate. This article summarizes the fundamental properties and preparation methods of calcium sulfate whisker materials as well as their applications in cement, potential advantages and disadvantages, and practical applications and prospects. The introduction of CSWs has been demonstrated to enhance the strength, durability, and crack resistance of CBM while also addressing concerns related to permeability and shrinkage. The application of this technology is expected to improve the quality and lifespan of buildings, reduce maintenance costs, and positively impact the environment. The use of CSWs in CBM represents a promising material innovation that offers lasting and sustainable advancement in the construction industry.

4.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338459

RESUMO

Recycled crumb rubber (RCR) is considered a reliable asphalt modifier and a solution to the problem of scrap tyre recycling. RCR-modified asphalt (RCRMA) typically has good low-temperature performance and storage stability. However, the pre-treatment of crumb rubber (CR) impairs its physical properties, resulting in poor high-temperature performance, which limits the industrial application of RCRMA. In this study, low-density polyethylene (LDPE) composite RCR was used to modify asphalt, and LDPE/RCR-composite-modified asphalt (L-RCRMA) was produced to compensate for the deficiencies in the high-temperature performance of RCRMA. The comprehensive physical properties of L-RCRMA were elucidated using tests such as the conventional properties, rotational viscosity, and rheological tests. The results showed that the incorporation of LDPE improved the high-temperature stability and rutting resistance of the asphalt, but an excessive amount of LDPE impaired the low-temperature performance and storage stability of L-RCRMA. Therefore, it is necessary to control the amount of LDPE to balance the performance of the asphalt. On this basis, we recommend a dosage of 20% for RCR and 1.5% for LDPE.

5.
Materials (Basel) ; 17(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399158

RESUMO

Taking advantage of the strong adsorption characteristics of coffee grounds (CGs) and coffee ground biochar (CGB), this research employed equal amounts of 2%, 4%, 6%, and 8% CGs and CGB to replace cement. This study thereby examined the impacts of CGs and CGB on cement compressive strength, as well as their abilities to adsorb chloride ions and formaldehyde. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG-DTG), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to investigate the hydration mechanism and characterize the microscopic structure. The results show the following: (1) The presence of a substantial quantity of organic compounds in CGs is found to have an adverse effect on both the compressive strength and hydration degree of the sample. The use of CGB after high-temperature pyrolysis of phosphoric acid can effectively improve the negative impact of organic compounds on the sample. (2) The addition of CGs reduces the adsorption of chloride ions by cement, primarily due to the presence of fewer hydration products. However, when CGB was incorporated into cement, it enhanced the ability to adsorb chloride ions. (3) Cement containing 8% CGB content can slightly enhance the adsorption of formaldehyde. However, the cement sample with 8% CGB content exhibited the most significant ability to adsorb formaldehyde.

6.
Medicine (Baltimore) ; 103(1): e36737, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181268

RESUMO

RATIONALE: Brunner gland adenoma (BGA) is a rare benign duodenal tumor that is an adenomatoid lesion in nature rather than an actual tumor. Patients with different adenoma sizes have various clinical manifestations with nonspecific clinical symptoms. Here, We report a case of BGA with black stool and anemia as the primary manifestations. PATIENT CONCERNS: A young female patient was admitted to the hospital because of black stool and anemia. Endoscopic surgery was performed to a definitive diagnosis, and endoscopic tumor-like lesions were resected. DIAGNOSIS: The patient was diagnosed with duodenal Brunner adenoma and received related treatment. OUTCOMES: After treatment, the patient symptoms improved, and he was discharged. LESSONS: Brunner adenoma of the duodenum is a rare benign duodenum tumor. This report paper describes a case of BGA with black stool and anemia as the primary manifestations, followed by endoscopic resection and treatment. The literature on Brunner adenoma of the duodenum has been analyzed and discussed. Clinicians should pay attention to differentiating the disease based on atypical symptoms.


Assuntos
Adenoma , Anemia , Neoplasias Duodenais , Masculino , Humanos , Feminino , Sangue Oculto , Duodeno/cirurgia , Melena , Neoplasias Duodenais/complicações , Neoplasias Duodenais/diagnóstico , Neoplasias Duodenais/cirurgia , Anemia/etiologia , Adenoma/complicações , Adenoma/diagnóstico , Adenoma/cirurgia
7.
Materials (Basel) ; 16(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005094

RESUMO

Current research on aluminum alloy gusset joints has neglected the influences of the angle between members and the curvature of the joint plate on joint performance. This study introduces the concept of the planar angle and establishes 16 joint models using ABAQUS finite element software with parameters such as the planar angle, arch angles, joint plate thickness, web thickness, and flange thickness. The load-bearing capacity of the novel aluminum alloy arch gusset joint is theoretically analyzed, and the concepts of strong and weak axes are proposed. The failure modes and significance of different parameters regarding the bearing capacity and initial stiffness of the joint under various parameters are summarized. The results indicate that the planar and arch angles significantly affect the bearing capacity, stiffness, and failure mode of the joint.

8.
Polymers (Basel) ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631530

RESUMO

In recent years, there has been a growing utilization of lightweight engineered cementitious composites (LECC) for the reinforcement and restoration of contemporary building structures. This study focuses on the incorporation of zeolite, serving as an internal reservoir for moisture maintenance, and examines its impact on various performance indicators, including apparent density, compressive strength, tensile strength, and autogenous shrinkage. Additionally, the influence of zeolite on the tensile and ductile properties of LECC is elucidated with the aid of scanning electron microscopy (SEM). The findings reveal that the addition of zeolite enables the preservation of excellent mechanical properties of LECC while further reducing its density. Notably, the introduction of a substantial amount of zeolite leads to a decrease in matrix density, average crack width, and ultimate tensile strain. The ultimate tensile strain exceeds 8% to reach 8.1%, while the decrease in compressive and tensile strengths is marginal. Zeolite's internal curing capability facilitates the complete hydration of unhydrated cement, concurrently alleviating the autogenous shrinkage of LECC. Consequently, the durability and reliability of the material are enhanced. The ability of zeolite, with its porous framework structure, to significantly improve the ultimate tensile strain of the matrix can be attributed to the amplified occurrence of active defects and a shift in the pull-out mode of PE fibers from "pull-out" to "pull-through". This study presents a promising alternative material in the field of engineering, holding potential for diverse building and infrastructure projects, as it enhances their durability and reliability.

9.
Materials (Basel) ; 16(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444863

RESUMO

Based on the physical and chemical properties of red sandstone (RS), RS is used to produce composite cementitious materials. The flowability, mechanical strength, and micromechanics of a red sandstone-cement binary cementitious material (RS-OPC) were investigated as functions of the amount of RS replacing the cement (OPC). Additionally, the feasibility of producing red sandstone-phosphogypsum-cement composite materials (RS-PG-OPC) using the phosphogypsum (PG)- enhanced volcanic ash activity of RS was investigated. The products of hydration and microstructures of RS-OPC and RS-PG-OPC were analyzed by XRD, FTIR, TG-DTG, and SEM. RS enhanced the flowability of RS-OPC relative to the unmodified cement slurry but lowered its mechanical strength, according to the experiments. When the quantity of OPC replaced was greater than 25%, the compressive strength after 28 days was substantially reduced, with a maximum reduction of 78.8% (RS-60). The microscopic mechanism of RS-OPC suggested that the active SiO2 in the RS can react with Ca(OH)2 to produce C-S-H but can only utilize small quantities of Ca(OH)2, confirming the low volcanic ash activity of RS. RS was responsible for dilution and filling. The incorporation of 5% PG into RS-PG-OPC slowed the hydration process compared with RS-OPC without PG but also increased the flowability and aided in the later development of the mechanical strength. This was primarily because the addition of PG provided the system with sufficient Ca2+ and SO42- to react with [Al(OH)6]3- to form ettringite (AFt), therefore accelerating the dissolution of Al3+ in RS to generate more AFt and C-(A)-S-H gels. To some extent, this excites the volcanic ash of RS. Therefore, if there is an abundance of waste RS in the region and a lack of other auxiliary cementitious materials, a sufficient quantity of PG and a finely powdered waste RS component can be used to replace cementitious materials prepared with OPC to reduce the mining of raw OPC materials.

10.
Polymers (Basel) ; 15(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242847

RESUMO

Waste tires can be ground as crumb rubber (CR) and incorporated into asphalt pavement for efficient resource utilization. However, due to its thermodynamic incompatibility with asphalt, CR cannot be uniformly dispersed in the asphalt mix. In order to address this issue, pretreating the CR with desulfurization is a common way to restore some of the properties of natural rubber. The main technique of desulfurization and degradation is dynamic desulfurization, requiring a high temperature that may lead to asphalt fires, aging, and the volatilization of light substances, generating toxic gases and resulting in environmental pollution. Therefore, a green and low-temperature controlled desulfurization technology is proposed in this study to exploit the maximum potential of CR desulfurization and obtain high-solubility "liquid waste rubber" (LWR) close to the ultimate regeneration level. In this work, LWR-modified asphalt (LRMA) with superior low-temperature performance and processability, stable storage, and less susceptibility to segregation was developed. Nevertheless, its rutting and deformation resistance deteriorated at high temperatures. The results showed that the proposed CR-desulfurization technology could produce LWR with 76.9% solubility at a low temperature of 160 °C, which is close to or even better than the finished products produced at the preparation temperature of TB technology, i.e., 220-280 °C.

11.
Materials (Basel) ; 16(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110087

RESUMO

This paper investigates the use of steel slag in the place of basalt coarse aggregate in Stone Mastic Asphalt-13 (SMA-13) gradings in the early forming of an experimental pavement and evaluates the test performance of the mixes, combined with 3D scanning techniques to analyse the initial textural structure of the pavement. Laboratory tests were carried out to design the gradation of the two asphalt mixtures and to assess the strength, chipping and cracking resistance of the asphalt mixtures using water immersion Marshall tests, freeze-thaw splitting tests, rutting tests and for comparison with laboratory tests, while surface texture collection and analysis of the height parameters (i.e., Sp, Sv, Sz, Sq, Ssk) and morphological parameters (i.e., Spc) of the pavement were performed to assess the skid resistance of the two asphalt mixtures. Firstly, the results show that a substitution of steel slag for basalt in pavements is a good alternative for efficient resource utilization. Secondly, when steel slag was used in place of basalt coarse aggregate, the water immersion Marshall residual stability improved by approximately 28.8% and the dynamic stability by approximately 15.8%; the friction values decayed at a significantly lower rate, and the MTD did not change significantly. Thirdly, in the early stages of pavement formation, Sp, Sv, Sz, Sq and Spc showed a good linear relationship with BPN values, and these texture parameters can be used as parameters to describe steel slag asphalt pavements. Finally, this study also found that the standard deviation of peak height was higher for steel slag-asphalt mixes than for basalt-asphalt mixes, with little difference in texture depth, while the former formed more peak tips than the latter.

12.
Polymers (Basel) ; 15(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987193

RESUMO

In order to realize effective monitoring for the working performance of seismic isolation structures, a multi-walled carbon nanotube (MWCNT)/methyl vinyl silicone rubber (VMQ) composite was prepared via mechanical blending using dicumyl peroxide (DCP) and 2,5-dimethyl-2,5-di(tert-butyl peroxy)hexane (DBPMH) as vulcanizing agents. The effects of the different vulcanizing agents on the dispersion of the MWCNT, electrical conductivity, mechanical properties, and resistance-strain response of the composites were investigated. The experimental results showed that the percolation threshold of the composites prepared with the two vulcanizing agents was low, while the DCP-vulcanized composites showed high mechanical properties and a better resistance-strain response sensitivity and stability, especially after 15,000 loading cycles. According to the analysis using scanning electron microscopy and Fourier infrared spectroscopy, it was found that the DCP contributed higher vulcanization activity, a denser cross-linking network, better and uniform dispersion, and a more stable damage-reconstruction mechanism for the MWCNT network during the deformation load. Thus, the DCP-vulcanized composites showed better mechanical performance and electrical response abilities. When employing an analytical model based on the tunnel effect theory, the mechanism of the resistance-strain response was explained, and the potential of this composite for real-time strain monitoring for large deformation structures was confirmed.

13.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363378

RESUMO

The excellent overall performance of polyoxymethylene (POM) fiber enables it to show great potential for engineering applications. The effect of POM fibers on the dynamic compression mechanical properties of concrete is an important issue for its application in engineering structures such as airport pavement and bridges. It is necessary to investigate the dynamic compressive mechanical properties of POM-fiber-reinforced concrete (PFRC) under impact loading. The PFRC specimens with various POM fiber lengths (6, 8, 12, 16, and 24 mm) and ordinary-performance concrete (OPC) specimens were tested by utilizing the split Hopkinson pressure bar (SHPB). We studied the effect of fiber length and strain rate on the dynamic compression mechanical properties of PFRC and established a damage dynamic constitutive model for PFRC. The results indicate that the dynamic compressive strength, peak strain, ultimate strain, dynamic peak toughness, dynamic ultimate toughness, and dynamic increase factor (DIF) of the PFRC increased obviously with the increase in strain rate. POM fiber was found to be able to effectively improve the deformation ability and impact toughness of concrete. The dynamic compressive strength and impact toughness of PFRC with a fiber length of 8 mm was optimal at different strain rates. The POM fibers with 16 mm and 24 mm lengths negatively affected the dynamic compressive strength of the concrete. The fiber length variation had an insignificant effect on the DIF of PFRC. The established damage dynamic constitutive model for PFRC was fitted and analyzed, and it was found that the model is able to describe the dynamic characteristics of PFRC well. This study can extend POM fibers to engineering structures that may be subjected to impact loading and act as a reference for the design of PFRC under impact loading.

14.
Opt Express ; 30(12): 20666-20683, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224806

RESUMO

Speckle denoising can improve digital holographic interferometry phase measurements but may affect experimental accuracy. A deep-learning-based speckle denoising algorithm is developed using a conditional generative adversarial network. Two subnetworks, namely discriminator and generator networks, which refer to the U-Net and DenseNet layer structures are used to supervise network learning quality and denoising. Datasets obtained from speckle simulations are shown to provide improved noise feature extraction. The loss function is designed by considering the peak signal-to-noise ratio parameters to improve efficiency and accuracy. The proposed method thus shows better performance than other denoising algorithms for processing experimental strain data from digital holography.

15.
Materials (Basel) ; 15(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36233989

RESUMO

The reuse of steel slag, a large-scale solid waste from steel production, has good social and environmental benefits. The application of a steel slag asphalt mixture is mainly hindered by its volume expansion in water. The expansion of steel slag can be inhibited by oxalic acid. The expansion rate and adhesion of steel slag were investigated, and the immersion stability of steel slag and its asphalt mixture was evaluated by water erosion. By means of XRD, XRF, TG, SEM, etc., the influence mechanism of oxalic acid and water erosion on the properties of steel slag and its asphalt mixture was discussed. The results show that oxalic acid can not only inhibit the expansion of steel slag but also improve its crush resistance, with a reduction in the expansion rate of steel slag by 53%. Oxalic acid is able to leach alkaline metal elements, reducing its adhesion with asphalt. After 10 days of water erosion, the rutting stability and bending crack resistance of the treated steel slag mixture decreased by 37% and 43.2%, respectively. Calcium oxalate is generated on the surface of treated steel slag, which improves the surface compactness, effectively inhibits the expansion of steel slag caused by water erosion, and improves the performance of steel slag and its asphalt mixture. Water erosion can accelerate the hydration and shedding of calcium-containing substances on the surface of steel slag, reduce the adhesion of steel slag, and lead to degradation in the performance of steel slag and its asphalt mixture. Oxalic acid is able to effectively inhibit the expansion of steel slag, and the treated steel slag can be used as recycled aggregate in asphalt mixture, effectively solving the problems of road aggregate deficiency and environmental pollution caused by steel slag.

16.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295445

RESUMO

As a commonly used surface structure for airport runways, concrete slabs are subjected to various complex and random loads for a long time, and it is necessary to investigate their fracture performance at different strain rates. In this study, three-point bending fracture tests were conducted using ordinary performance concrete (OPC) and basalt fiber-reinforced airport pavement concrete (BFAPC) with fiber volume contents of 0.2, 0.4, and 0.6%, at five strain rates (10-6 s-1, 10-5 s-1, 10-4 s-1, 10-3 s-1, and 10-2 s-1). Considering parameters such as the peak load, initial cracking load, double K fracture toughness, fracture energy, and critical crack expansion rate, the effects of the fiber volume content and strain rate on the fracture performance of concrete were systematically studied. The results indicate that these fracture parameters of OPC and BFAPC have an obvious strain rate dependence; in particular, the strain rate has a positive linear relationship with peak load and fracture energy, and a positive exponential relationship with the critical crack growth rate. Compared with OPC, the addition of basalt fiber (BF) can improve the fracture performance of airport pavement concrete, to a certain extent, where 0.4% and 0.6% fiber content were the most effective in enhancing the fracture properties of concrete under strain rates of 10-6-10-5 s-1 and 10-4-10-2 s-1, respectively. From the point of view of the critical crack growth rate, it is shown that the addition of BF can inhibit the crack growth of concrete. In this study, the fracture properties of BFAPC were evaluated at different strain rates, providing an important basis for the application of BFAPC in airport pavement.

17.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079477

RESUMO

Due to the low content of silicon and aluminum in red mud and the low reaction activity of red mud, when it was used to prepare composite cementitious materials, it was necessary to assist other aluminosilicates and improve their activity by certain methods. In this study, it was proposed to add slag to increase the percentage of silicon and aluminum in the system, and to improve the reactivity of the system through the activation effect of sulfate in phosphogypsum. The effects of slag and phosphogypsum contents on the mechanical properties and microstructures of composite cementitious materials were studied. X-ray diffraction analysis (XRD), thermogravimetric analysis (TG-DTG), and scanning electron microscopy (SEM) were used to analyze the effects of slag and phosphogypsum contents on the hydration products, microstructure, and strength formation mechanism of composite cementitious materials. The results show that with the increase of slag, the strength of the composite cementitious material increases gradually. When the slag content is 50%, the 28-day compressive strength reaches a maximum of about 14 MPa. Compared with the composite material without phosphogypsum, the composite cementitious material with 10-20% phosphogypsum showed higher strength properties, in which the 28-day compressive strength exceeds 24 MPa. The main reason for this is that the sulfate in phosphogypsum can cause the composite cementitious material to generate a large amount of ettringite and accelerate the dissolution of red mud and slag, increasing the release of aluminates, silicates, and Ca2+ to form more C-(A)-S-H and ettringite. In addition, a large amount of C-(A)-S-H makes ettringite and unreacted particles combine into a uniform and compact structure, thus improving the strength. When the content of phosphogypsum exceeds 40%, the 28-day compressive strength of the composite cementitious material drops below 12 MPa due to the presence of fewer hydration products and the expansion of ettringite.

18.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015583

RESUMO

Three different blending procedures were used to create multiwalled carbon nanotube (MWCNT)-modified chloroprene rubber (CR)/natural rubber (NR) blended composites (MWCNT/CR-NR). The effects of the blending process on the morphology of the conductive network and interfacial contacts were researched, as well as the resistance-strain response behavior of the composites and the mechanism of composite sensitivity change under different processes. The results show that MWCNT/CR-NR composites have a wide strain range (ε = 300%) and high dynamic resistance-strain response repeatability. Different blending procedures have different effects on the morphology of the conductive network and the interfacial interactions of the composites. If the blending procedures have wider conductive phase spacing and stronger interfacial contacts, the change in the conductive path and tunneling distance occurs more rapidly, and the material has a higher resistance-strain response sensitivity.

19.
Materials (Basel) ; 15(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36013636

RESUMO

Despite many cases of textile-reinforced engineered cementitious composites (TR-ECCs) for repairing and strengthening concrete structures in the literature, research on lightweight engineered cementitious composites (LECC) combined with large rupture strain (LRS) textile and the effect of textile arrangement on tensile properties is still lacking. Therefore, this paper develops textile-reinforced lightweight engineered cementitious composites (TR-LECCs) with high strain characteristics through reinforcement ratio, arrangement form, and textile type. The study revealed that, by combining an LRS polypropylene (PP) textile and LECC, TR-LECCs with an ultimate strain of more than 8.0% (3-4 times that of traditional TR-ECCs) could be developed, and the PP textile's utilization rate seemed insensitive to the enhancement rate. The basalt fiber-reinforced polymer (BFRP) textile without epoxy resin coating had no noticeable reinforcement effect because of bond slip; in contrast, the BFRP grid with epoxy resin coating had an apparent improvement in bond performance with the matrix and a better reinforcement effect. The finite element method (FEM) verified that a concentrated arrangement increased the stress concentration in the TR-LECC, as well as the stress value. In contrast, a multilayer arrangement enabled uniform distribution of the stress value and revealed that the weft yarn could help the warp yarn to bear additional tensile loads.

20.
Polymers (Basel) ; 14(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893943

RESUMO

Polyoxymethylene (POM) fiber is a new polymer fiber with the potential to improve the performance of airport pavement concrete. The effect of POM fiber on the flexural fatigue properties of concrete is an important issue in its application for airport pavement concrete. In this study, four-point flexural fatigue experiments were conducted using ordinary performance concrete (OPC) and POM fiber airport pavement concrete (PFAPC) with fiber volume contents of 0.6% and 1.2%, at four stress levels, to examine the flexural fatigue characteristics of these materials. A two-parameter Weibull distribution test of flexural fatigue life was performed, after examining the change in flexural fatigue deformation using the cycle ratio (n/N). A flexural fatigue life equation was then constructed considering various failure probabilities (survival rate). The results show that POM fiber had no discernible impact on the static load strength of airport pavement concrete, and the difference between PFAPC and OPC in terms of static load strength was less than 5%. POM fiber can substantially increase the flexural fatigue deformation capacity of airport pavement concrete by almost 100%, but POM fiber had a different degree of detrimental impact on the fatigue life of airport pavement concrete compared to OPC, with a maximum decrease of 85%. The fatigue lives of OPC and PFAPC adhered to the two-parameter Weibull distribution, the single- and double-log fatigue equations considering various failure probabilities had a high fitting degree based on the two-parameter Weibull distribution, and their R2 was essentially over 0.90. The ultimate fatigue strength of PFAPC was roughly 4% lower than that of OPC. This study on the flexural fatigue properties of POM fiber airport pavement concrete has apparent research value for the extension of POM fiber to the construction of long-life airport pavements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...