Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Cell Biol ; 36(9): 759-766, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28753062

RESUMO

Cardiac fibrosis is closely related to multiple cardiovascular system diseases, and noncoding RNAs (ncRNAs), including long noncoding RNA (lncRNA) and microRNA (miRNA), have been reported to play a vital role in fibrogenesis. The present study aims to investigate the potential regulatory mechanism of lncRNA H19 and miR-455 on fibrosis-associated protein synthesis in cardiac fibroblasts (CFs). miRNA microarray assay revealed 34 significantly dysregulated miRNAs, including 13 upregulated miRNAs and 21 downregulated miRNAs. Among these aberrantly expressed miRNAs, we paid attention to miR-455, which was significantly downregulated in diabetic mouse myocardium and Ang II-induced CFs. Loss- and gain-of-function experiments showed that miR-455 expression levels were negatively correlated with collagen I and III expression in Ang II-induced CFs. Bioinformatic prediction programs (TargetScan, miRanda, starBase) predicted that miR-455 targeted connective tissue growth factor (CTGF) and H19 with complementary binding sites at the 3'-untranslated region, which was validated by luciferase reporter assay. Functional validation assay demonstrated that H19 knockdown could enhance the antifibrotic role of miR-455 and attenuate the CTGF expression and further decrease fibrosis-associated protein synthesis (collagen I, III, and α-SMA). The present study reveals a novel function of the H19/miR-455 axis targeting CTGF in cardiac fibrosis, suggesting its potential therapeutic role in cardiac diseases.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , MicroRNAs/genética , Miocárdio/patologia , RNA Longo não Codificante/genética , Animais , Diabetes Mellitus Experimental , Matriz Extracelular/genética , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL
2.
Neurochem Res ; 41(8): 2140-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27255601

RESUMO

Arecoline is a major alkaloid of areca nut and has been effect on central nervous system. Although arecoline-induced neurotoxicity has been reported, the possible underlying neurotoxic mechanisms have not yet been elucidated. Increasing evidences have shown that both excessive endoplasmic reticulum (ER) stress and disturbance of hydrogen sulfide (H2S) production are involved in the pathophysiology of numerous neurodegenerative diseases. Here, the purpose of present study was to verify whether ER stress and the disturbance of endogenous H2S generation are also involved in arecoline-caused neurotoxicity. We found that treatment of PC12 cells with arecoline induced the down-regulation of cells viability and up-regulation of apoptosis and the activity of caspase-3, indicating the neurotoxic role of arecoline to PC12 cells. In addition, arecoline also increased the expression of Bax (pro-apoptotic protein) and attenuated the expression of Bcl-2 (anti-apoptotic protein) in PC12 cells. Simultaneously, arecoline caused excessive ER stress in PC12 cells, as evidenced by the up-regulations of Glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), and Cleaved caspase-12 expressions. Notably, the level of H2S in the culture supernatant and the expressions of cystathionine ß-synthase and 3-mercaptopyruvate sulfurtransferase (two major enzymes for endogenous H2S generation in PC12 cells) were also reduced by arecoline treatment. These results indicate that arecoline-caused neurotoxicity to PC12 cells is involved in ER stress and disturbance of endogenous H2S generation and suggest that the modulation of ER stress and endogenous H2S generation may be potential therapeutic approach in treatment of arecoline-caused neurotoxicity.


Assuntos
Arecolina/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Sulfeto de Hidrogênio/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células PC12 , Ratos
3.
Mol Med Rep ; 8(2): 603-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23807148

RESUMO

A number of studies have demonstrated that inflammation plays a role in doxorubicin (DOX)-induced cardiotoxicity. However, the molecular mechanism by which DOX induces cardiac inflammation has yet to be fully elucidated. The present study aimed to investigate the role of the p38 mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) pathway in DOX-induced inflammation and cytotoxicity. The results of our study demonstrated that the exposure of H9c2 cardiac cells to DOX reduced cell viability and stimulated an inflammatory response, as demonstrated by an increase in the levels of interleukin-1ß (IL-1ß) and IL-6, as well as tumor necrosis factor-α (TNF-α) production. Notably, DOX exposure induced the overexpression of phosphorylated p38 MAPK and phosphorylation of the NF-κB p65 subunit, which was markedly inhibited by SB203580, a specific inhibitor of p38 MAPK. The inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC), a selective inhibitor of NF-κB, significantly ameliorated DOX-induced inflammation, leading to a decrease in the levels of IL-1ß and IL-6, as well as TNF-α production in H9c2 cells. The pretreatment of H9c2 cells with either SB203580 or PDTC before exposure to DOX significantly attenuated DOX-induced cytotoxicity. In conclusion, our study provides novel data demonstrating that the p38 MAPK/NF-κB pathway is important in the induction of DOX-induced inflammation and cytotoxicity in H9c2 cardiac myocytes.


Assuntos
Doxorrubicina/toxicidade , Inflamação/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Inflamação/induzido quimicamente , Fosforilação/efeitos dos fármacos , Ratos , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...