Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(26): e2302778, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442769

RESUMO

Various catalysts are developed to improve the performance of metal oxide semiconductor gas sensors, but achieving high selectivity and response intensity in chemiresistive gas sensors (CGSs) remains a significant challenge. In this study, an in situ-annealing approach to synthesize Cu catalytic sites on ultrathin WO2.72 nanowires for detecting toluene at ultralow concentrations (Ra /Rg = 1.9 at 10 ppb) with high selectivity is developed. Experimental and molecular dynamic studies reveal that the Cu single atoms (SAs) act as active sites, promoting the oxidation of toluene and increasing the affinity of Cu single-atom catalysts (SACs)-containing sensing materials for toluene while weakening the association with carbon dioxide or water vapor. Density functional theory studies show that the selective binding of toluene to Cu SAs is due to the favorable binding sites provided by Cu SAs for toluene molecules over other gaseous species, which aids the adsorption of toluene on WO2.72 nanowires. This study demonstrates the successful atomic-level interface regulation engineering of WO2.72 nanowire-supported Cu SAs, providing a potential strategy for the development of highly active and durable CGSs.

2.
Genome Biol ; 19(1): 195, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419941

RESUMO

BACKGROUND: Interspecific hybridization and whole genome duplication are driving forces of genomic and organism diversification. But the effect of interspecific hybridization and whole genome duplication on the non-coding portion of the genome in particular remains largely unknown. In this study, we examine the profile of long non-coding RNAs (lncRNAs), comparing them with that of coding genes in allotetraploid cotton (Gossypium hirsutum), its putative diploid ancestors (G. arboreum; G. raimondii), and an F1 hybrid (G. arboreum × G. raimondii, AD). RESULTS: We find that most lncRNAs (80%) that were allelic expressed in the allotetraploid genome. Moreover, the genome shock of hybridization reprograms the non-coding transcriptome in the F1 hybrid. Interestingly, the activated lncRNAs are predominantly transcribed from demethylated TE regions, especially from long interspersed nuclear elements (LINEs). The DNA methylation dynamics in the interspecies hybridization are predominantly associated with the drastic expression variation of lncRNAs. Similar trends of lncRNA bursting are also observed in the progress of polyploidization. Additionally, we find that a representative novel lncRNA XLOC_409583 activated after polyploidization from a LINE in the A subgenome of allotetraploid cotton was involved in control of cotton seedling height. CONCLUSION: Our results reveal that the processes of hybridization and polyploidization enable the neofunctionalization of lncRNA transcripts, acting as important sources of increased plasticity for plants.


Assuntos
Gossypium/genética , Hibridização Genética , Elementos Nucleotídeos Longos e Dispersos , Poliploidia , RNA Longo não Codificante , Metilação de DNA , Elementos de DNA Transponíveis , Genoma de Planta , Gossypium/metabolismo , RNA Polimerase II/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...