Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadk9460, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598623

RESUMO

All-solution-processed organic optoelectronic devices can enable the large-scale manufacture of ultrathin wearable electronics with integrated diverse functions. However, the complex multilayer-stacking device structure of organic optoelectronics poses challenges for scalable production. Here, we establish all-solution processes to fabricate a wearable, self-powered photoplethysmogram (PPG) sensor. We achieve comparable performance and improved stability compared to complex reference devices with evaporated electrodes by using a trilayer device structure applicable to organic photovoltaics, photodetectors, and light-emitting diodes. The PPG sensor array based on all-solution-processed organic light-emitting diodes and photodetectors can be fabricated on a large-area ultrathin substrate to achieve long storage stability. We integrate it with a large-area, all-solution-processed organic solar module to realize a self-powered health monitoring system. We fabricate high-throughput wearable electronic devices with complex functions on large-area ultrathin substrates based on organic optoelectronics. Our findings can advance the high-throughput manufacture of ultrathin electronic devices integrating complex functions.

2.
Adv Mater ; 36(19): e2309940, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373410

RESUMO

The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe7S8 core is enveloped snugly by a curved MoS2 dome shell (Fe7S8@MoS2), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe7S8 core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.

3.
Front Nutr ; 9: 1064521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505261

RESUMO

Marination is a common technology in meat processing with advantages of enhancing tenderness, water retention, and overall quality. This study was conducted to investigate the effect of vacuum tumbling and immersion marination on meat quality, microstructure, water mobility, protein changes, and denaturation of Xueshan chicken. Results showed that vacuum tumbling significantly increased the marinating rate of chicken, tenderness, meat texture, and water retention. Meanwhile, vacuum tumbling decreased total sulfhydryl content alongside an increased protein surface hydrophobicity and free sulfhydryl content, indicating that vacuum tumbling elevated the degree of protein denaturation. Further, the peak area corresponding to the relaxation time T22 after vacuum tumbling was significantly higher than that of immersion marination, suggesting that the stability of the immobilized water of chicken was reduced by vacuum tumbling. Compared to immersion marination, vacuum tumbling improved myofibril fragmentation index (MFI) presenting fewer myofibrillar protein bands in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel and more damaged muscular cells. Overall, vacuum tumbling could improve the marination absorptivity, protein degradation, and denaturation, resulting in changes in myofibril structure and meat quality of Xueshan chicken.

4.
Chem Soc Rev ; 51(9): 3759-3793, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35420617

RESUMO

Skin bioelectronics are considered as an ideal platform for personalised healthcare because of their unique characteristics, such as thinness, light weight, good biocompatibility, excellent mechanical robustness, and great skin conformability. Recent advances in skin-interfaced bioelectronics have promoted various applications in healthcare and precision medicine. Particularly, skin bioelectronics for long-term, continuous health monitoring offer powerful analysis of a broad spectrum of health statuses, providing a route to early disease diagnosis and treatment. In this review, we discuss (1) representative healthcare sensing devices, (2) material and structure selection, device properties, and wireless technologies of skin bioelectronics towards long-term, continuous health monitoring, (3) healthcare applications: acquisition and analysis of electrophysiological, biophysical, and biochemical signals, and comprehensive monitoring, and (4) rational guidelines for the design of future skin bioelectronics for long-term, continuous health monitoring. Long-term, continuous health monitoring of advanced skin bioelectronics will open unprecedented opportunities for timely disease prevention, screening, diagnosis, and treatment, demonstrating great promise to revolutionise traditional medical practices.


Assuntos
Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...