Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 744, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890593

RESUMO

BACKGROUND: Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS: A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS: Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS: Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.


Assuntos
Metilação de DNA , Epigênese Genética , Nitroimidazóis , Prostatectomia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Idoso , Pessoa de Meia-Idade , Hipóxia Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Administração Oral
2.
Acta Biochim Biophys Sin (Shanghai) ; 53(6): 726-738, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33913495

RESUMO

The cellular response to DNA damage is crucial for maintaining the integrity and stability of molecular structure. To maintain genome stability, DNA-damaged cells should be arrested so that mutations can be repaired before replication. Although several key components required for this arrest have been discovered, the majority of the pathways are still unclear. Through a number of assays, including cell viability, colony formation, and apotheosis assay, we found that AKR1B10 protected cells from UVC-induced DNA damage. Surprisingly, UVC-induced γH2AX foci and DNA double-strand breaks in the AKR1B10-overexpressing cells were ∼4-5 folds lower than those in the control group. The expression levels of AKR1B10, p53, chk1, chk2, nuclear factor (NF)-κB, and p65 showed dynamic changes in response to UVC irradiation. Our results suggested that AKR1B10 is involved in the pathway of cell cycle checkpoint and NF-κB in DNA damage. Taken together, our results suggest that AKR1B10 is involved in the repair of the DNA double-strand break, which provides a new insight into the role of AKR1B10 in DNA damage repair and indicates a new trail in tumorigenesis and cancer drug resistance.


Assuntos
Aldo-Ceto Redutases/metabolismo , Neoplasias da Mama/metabolismo , Dano ao DNA/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Aldo-Ceto Redutases/genética , Apoptose/efeitos da radiação , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/genética , Feminino , Vetores Genéticos/genética , Histonas/metabolismo , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Transfecção , Proteína Supressora de Tumor p53/metabolismo
3.
Nat Microbiol ; 6(1): 51-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199863

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3 and individuals with COVID-19 have symptoms that can be asymptomatic, mild, moderate or severe4,5. In the early phase of infection, T- and B-cell counts are substantially decreased6,7; however, IgM8-11 and IgG12-14 are detectable within 14 d after symptom onset. In COVID-19-convalescent individuals, spike-specific neutralizing antibodies are variable3,15,16. No specific drug or vaccine is available for COVID-19 at the time of writing; however, patients benefit from treatment with serum from COVID-19-convalescent individuals17,18. Nevertheless, antibody responses and cross-reactivity with other coronaviruses in COVID-19-convalescent individuals are largely unknown. Here, we show that the majority of COVID-19-convalescent individuals maintained SARS-CoV-2 spike S1- and S2-specific antibodies with neutralizing activity against the SARS-CoV-2 pseudotyped virus, and that some of the antibodies cross-neutralized SARS-CoV, Middle East respiratory syndrome coronavirus or both pseudotyped viruses. Convalescent individuals who experienced severe COVID-19 showed higher neutralizing antibody titres, a faster increase in lymphocyte counts and a higher frequency of CXCR3+ T follicular help (TFH) cells compared with COVID-19-convalescent individuals who experienced non-severe disease. Circulating TFH cells were spike specific and functional, and the frequencies of CXCR3+ TFH cells were positively associated with neutralizing antibody titres in COVID-19-convalescent individuals. No individuals had detectable autoantibodies. These findings provide insights into neutralizing antibody responses in COVID-19-convalescent individuals and facilitate the treatment and vaccine development for SARS-CoV-2 infection.


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Células T Auxiliares Foliculares/imunologia , Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Humanos , Receptores CXCR3/imunologia
4.
Cell Biosci ; 6: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26949513

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is one of the most common human head and neck cancers with high incidence in Southern China, Southeast Asia and North Africa. Because of its nonspecific symptoms, the early diagnosis of NPC is very difficult. The 5-year survival rate is not ideal in spite of great innovations in radiation and chemotherapy treatments. Highly sensitive and specific prognostic biomarkers are eager for NPC clinical diagnosis. To find specific target molecules is very important for individualized treatment. Aldo-keto reductase B10 (AKR1B10) is closely related to tumorigenesis and tumor development, and however, its expression level in NPC tissues is not clear. RESULTS: AKR1B10 expression levels were validated in benign, para-cancerous nasopharyngeal and NPC tissues by immunohistochemical evaluation. AKR1B10 was positively expressed in 42 (82.4 %) of 51 benign specimens, and 235 (98.7 %) of 238 para-carcinoma specimens. This percentage was significantly higher than 44.5 % (133/299) in nasopharyngeal carcinoma tissue (p < 0.01). AKR1B10 mRNA quantitative levels detected by real-time quantitative RT-PCR in 90 NPC tissue samples (0.10 ± 0.21) were significantly lower than that in 15 benign tissue samples (1.03 ± 1.12) (p < 0.01). AKR1B10 expression levels in NPC were correlated negatively with T-classification, lymph node metastasis (p < 0.05). We established nasopharyngeal cancer monoclonal cells CNE-2/AKR1B10 with AKR1B10 stable expression and CNE-2/vector cells without AKR1B10 expression by using a modified lentivirus-mediated method, and found that AKR1B10 inhibited the proliferation of CNE-2/AKR1B10 cells by using MTT assay and flow cytometry, and cell migration by in vitro scratch test. CONCLUSION: Taken together, our data suggest that low expression of AKR1B10 is an independent prognostic indicator in nasopharyngeal carcinoma, and that AKR1B10 may be involved in regulating the proliferation and migration of nasopharyngeal cancer cells.

5.
J Opt Soc Am A Opt Image Sci Vis ; 31(9): 2105-8, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25401452

RESUMO

A modified Nth-order correlation function is derived that can effectively remove the noise background encountered in high-order thermal light ghost imaging (GI). Based on this, the quality of the reconstructed images in an Nth-order lensless GI setup has been greatly enhanced compared to former high-order schemes for the same sampling number. In addition, the dependence of the visibility and signal-to-noise ratio for different high-order images on the sampling number has been measured and compared.

6.
Int J Clin Exp Pathol ; 7(7): 3791-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120755

RESUMO

Mouse aldo-keto reductase family 1 member B8 (AKR1B8) has the highest similarity to human aldo-keto reductase family 1 member B10 (AKR1B10), a secretory protein through lysosomes-mediated non-classical secretory pathway. To identify whether AKR1B8 is secreted through the same pathway, we carried out this study. Self-developed sandwich ELISA and western blot were used to detect AKR1B8 in cells and culture medium of CT-26 murine colon carcinoma cells. AKR1B8 releases in an independent manner to Brefeldin A, an inhibitor of ER-to-Golgi classical secretion pathway. Several factors, which are involved in the non-classical secretion pathway, such as temperature, ATP and calcium ion, regulated AKR1B8 secretion from mouse colorectal cancer cells CT-26. Lysosomotropic NH4Cl increased AKR1B8 secretion, and AKR1B8 was located in isolated lysosomes. Therefore, AKR1B8 is a new secretory protein through the lysosomes-mediated non-classical pathway.


Assuntos
Aldeído Redutase/metabolismo , Neoplasias do Colo/enzimologia , Neoplasias do Colo/metabolismo , Lisossomos/metabolismo , Aldo-Ceto Redutases , Animais , Western Blotting , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Camundongos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...