Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38757947

RESUMO

The in-plane heterojunctions with atomic-level thickness and chemical-bond-connected tight interfaces possess high carrier separation efficiency and fully exposed surface active sites, thus exhibiting exceptional photocatalytic performance. However, the construction of in-plane heterojunctions remains a significant challenge. Herein, we prepared an in-plane ZnIn2S4/In(OH)3 heterojunction (ZISOH) by partial conversion of ZnIn2S4 to In(OH)3 through the addition of H2O2. This in situ oxidation etching-hydrolysis approach enables the ZISOH heterojunction to not only preserve the original nanosheet morphology of ZnIn2S4 but also form an intimate interface. Moreover, generated In(OH)3 serves as an electron-accepting platform and also promotes the adsorption of CO2. As a result, the heterojunction exhibits a remarkably enhanced performance for photocatalytic CO2 reduction. The production rate and selectivity of CO reach 1760 µmol g-1 h-1 and 78%, respectively, significantly higher than those of ZnIn2S4 (842 µmol g-1 h-1 and 65%). This work puts forward a feasible and facile approach to construct in-plane heterojunctions to enhance the photocatalytic performance of two-dimensional metal sulfides.

2.
Nat Commun ; 15(1): 4118, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750050

RESUMO

Multicomponent oxides are intriguing materials in heterogeneous catalysis, and the interface between various components often plays an essential role in oxidations. However, the underlying principles of how the hetero-interface affects the catalytic process remain largely unexplored. Here we report a unique structure design of MnCoOx catalysts by chemical reduction, specifically for ethane oxidation. Part of the Mn ions incorporates with Co oxides to form spinel MnxCo3-xO4, while the rests stay as MnO2 domains to create the MnO2-MnxCo3-xO4 interface. MnCoOx with Mn/Co ratio of 0.5 exhibits an excellent activity and stability up to 1000 h under humid conditions. The synergistic effects between MnO2 and MnxCo3-xO4 are elucidated, in which the C2H6 tends to be adsorbed on the interfacial Co sites and subsequently break the C-H bonds on the reactive lattice O of MnO2 layer. Findings from this study provide valuable insights for the rational design of efficient catalysts for alkane combustion.

3.
Angew Chem Int Ed Engl ; : e202404884, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760322

RESUMO

In this paper, we report a high-performance carbon nitride supported Cu single-atom catalyst featuring defected low-coordination Cu-N2 motif (Cu-N2-V). Lead many recently reported photocatalysts and its Cu-N3 and Cu-N4 counterparts, Cu-N2-V exhibits superior photocatalytic activity for CO2 reduction to ethanol, delivering 69.8 µmol g-1 h-1 ethanol production rate, 97.8% electron-based ethanol selectivity, and a yield of ~10 times higher than Cu-N3 and Cu-N4. Revealed by the extensive experimental investigation combined with the DFT calculation, the superior photoactivity of Cu-N2-V stems from its unique defected Cu-N2 configuration. Firstly, Cu in Cu-N2-V exist in Cu+/Cu2+ dual valence states, although predominantly in Cu+. The Cu+ sites support CO2 activation and the Cu+/Cu2+ sites are conducive for strong *CO adsorption and subsequent *CO-*CO dimerization enabling C-C coupling. Secondly, the Cu sites in Cu-N2-V are rich in electrons and thus highly active. Together they dictate the rate-determining step on CO2 photoreduction to ethanol and lower the Gibbs free energy change. Furthermore, the defected configuration also promotes light adsorption and charge separation efficiency. Collectively, these make Cu-N2-V an effective and high-performance catalyst for solar-driven CO2 conversion to ethanol. This study also reveals the valence state change of Cu in Cu-N2-V during the CO2 photoreduction reaction.

4.
Dalton Trans ; 53(11): 5212-5221, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38390646

RESUMO

Designing composite catalysts that harness the strengths of individual components while mitigating their limitations is a fascinating yet challenging task in catalyst engineering. In this study, we aimed to enhance the catalytic performance by anchoring ZIF-67 nanoparticles of precise sizes onto lamella Si-MWW zeolite surfaces through a stepwise regrowth process. Co ions were initially grafted onto the zeolite surface using ultrasonication, followed by a seed-assisted secondary growth method. Si-MWW proved to be the ideal zeolite support due to its thin layered structure, large external surface area and substantial lateral dimensions. The abundant Si-OH groups on its surface played a crucial role in securely binding Co ions, limiting size growth and preventing undesirable ZIF-67 aggregation. The resulting ZIF-67/MWW composite with finely dispersed nano-scale ZIF-67 particles exhibited a remarkable catalytic performance and stability in the aldol condensation reactions involving acetone and various aldehydes. This approach holds promise for designing MOF/zeolite composite catalysts.

5.
J Am Chem Soc ; 146(8): 5523-5531, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367215

RESUMO

An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.

6.
Adv Mater ; 36(8): e2306910, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884276

RESUMO

Electron modulation presents a captivating approach to fabricate efficient electrocatalysts for the oxygen evolution reaction (OER), yet it remains a challenging undertaking. In this study, an effective strategy is proposed to regulate the electronic structure of metal-organic frameworks (MOFs) by the construction of MOF-on-MOF heterogeneous architectures. As a representative heterogeneous architectures, MOF-74 on MOF-274 hybrids are in situ prepared on 3D metal substrates (NiFe alloy foam (NFF)) via a two-step self-assembly method, resulting in MOF-(74 + 274)@NFF. Through a combination of spectroscopic and theory calculation, the successful modulation of the electronic property of MOF-(74 + 274)@NFF is unveiled. This modulation arises from the phase conjugation of the two MOFs and the synergistic effect of the multimetallic centers (Ni and Fe). Consequently, MOF-(74 + 274)@NFF exhibits excellent OER activity, displaying ultralow overpotentials of 198 and 223 mV at a current density of 10 mA cm-2 in the 1.0 and 0.1 M KOH solutions, respectively. This work paves the way for manipulating the electronic structure of electrocatalysts to enhance their catalytic activity.

7.
ChemSusChem ; 17(8): e202301619, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38123530

RESUMO

In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single-atom components introduced into Ti-BPDC (BPDC=2,2'-bipyridine-5,5'-dicarboxylic acid) as catalysts (M/Ti-BPDC) for the photocatalytic reduction of CO2. The results show that Fe/Ti-BPDC is the most active candidate for CO2 reduction to HCOOH due to its small limiting potential (-0.40 V). Ag, Cr, Mn, Ru, Zr, Nb, Rh, and Cu modified Ti-BPDC are also active to HCOOH since their limiting potentials are moderate although the reaction mechanisms are different across these materials. Most of the studied catalysts show poor activity and selectivity to CO product because the stability of *COOH/*OCOH intermediates is significantly weaker than *OCHO/*HCOO species. The moderate binding strength of *CO on Pd/Ti-BPDC is responsible for its superior catalytic activity toward CH3OH generation. Electronic structural analysis was performed to uncover the origin of the activity trend for CO2 reduction to different products on M/Ti-BPDC. The calculation results indicate that the activity and selectivity of CO2 photoreduction can be effectively tuned by designing single-atom metal-based MOF catalysts.

8.
Angew Chem Int Ed Engl ; 62(43): e202311336, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37670537

RESUMO

Rational design and engineering of high-performance molecular sieve membranes towards C2 H4 /C2 H6 and flue gas separations remain a grand challenge to date. In this study, through combining pore micro-environment engineering with meso-structure manipulation, highly c-oriented sub-100 nm-thick Cu@NH2 -MIL-125 membrane was successfully prepared. Coordinatively unsaturated Cu ions immobilized in the NH2 -MIL-125 framework enabled high-affinity π-complexation interactions with C2 H4 , resulting in an C2 H4 /C2 H6 selectivity approaching 13.6, which was 9.4 times higher than that of pristine NH2 -MIL-125 membrane; moreover, benefiting from π-complexation interactions between CO2 and Cu(I) sites, our membrane displayed superior CO2 /N2 selectivity of 43.2 with CO2 permeance of 696 GPU, which far surpassed the benchmark of other pure MOF membranes. The above multi-scale structure optimization strategy is anticipated to present opportunities for significantly enhancing the separation performance of diverse molecular sieve membranes.

9.
Inorg Chem ; 62(29): 11633-11644, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37439595

RESUMO

Small-pore Lewis acid zeolites have been showing increasing potential in shape-selective reactions regarding small-molecule conversion. In this study, Sn-CHA with tunable framework Sn contents was facilely prepared via a fluoride-free, seed-assisted interzeolite conversion (IZC) pathway. Commercially available dealuminated USY functioned as the parent sample, and seeding played a vital role in accelerating the transformation process, promoting the target zeolite yield, and guiding the attached-growth pathway. Notably, a proto-zeolite phase with a semi-constructed pore structure was captured during the IZC process, which represents a crucial intermediate stage for developing the complete CHA structure and ensuring a well-defined Sn status. The detailed synthesis mechanism was explored in multiscale by a series of techniques. The obtained Sn-CHA and proto-Sn-CHA exhibited excellent catalytic performance in converting 1,3-dihydroxyacetone to methyl lactate. Proto-Sn-CHA was proven to be a highly effective glucose isomerization catalyst owing to its larger pore size and Lewis acidic nature.

10.
Sci Adv ; 9(24): eadg0167, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327337

RESUMO

The decomposition of cobalt carbide (Co2C) to metallic cobalt in CO2 hydrogenation results in a notable drop in the selectivity of valued C2+ products, and the stabilization of Co2C remains a grand challenge. Here, we report an in situ synthesized K-Co2C catalyst, and the selectivity of C2+ hydrocarbons in CO2 hydrogenation achieves 67.3% at 300°C, 3.0 MPa. Experimental and theoretical results elucidate that CoO transforms to Co2C in the reaction, while the stabilization of Co2C is dependent on the reaction atmosphere and the K promoter. During the carburization, the K promoter and H2O jointly assist in the formation of surface C* species via the carboxylate intermediate, while the adsorption of C* on CoO is enhanced by the K promoter. The lifetime of the K-Co2C is further prolonged from 35 hours to over 200 hours by co-feeding H2O. This work provides a fundamental understanding toward the role of H2O in Co2C chemistry, as well as the potential of extending its application in other reactions.


Assuntos
Dióxido de Carbono , Hidrocarbonetos , Hidrogenação , Adsorção , Atmosfera
11.
Science ; 380(6645): 633-638, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167385

RESUMO

Structural and compositional inhomogeneity is common in zeolites and considerably affects their properties. Thickness-limited lateral resolution, lack of depth resolution, and electron dose-constrained focusing limit local structural studies of zeolites in conventional transmission electron microscopy (TEM). We demonstrate that a multislice ptychography method based on four-dimensional scanning TEM (4D-STEM) data can overcome these limitations. Images obtained from a ~40-nanometer-thick MFI zeolite exhibited a lateral resolution of ~0.85 angstrom that enabled the identification of individual framework oxygen (O) atoms and the precise determination of the orientations of adsorbed molecules. Furthermore, a depth resolution of ~6.6 nanometers allowed probing of the three-dimensional distribution of O vacancies, as well as the phase boundaries in intergrown MFI and MEL zeolites. The 4D-STEM ptychography can be generally applied to other materials with similar high electron-beam sensitivity.

12.
Nat Commun ; 14(1): 3152, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258522

RESUMO

It is shown that Machine Learning (ML) algorithms can usefully capture the effect of crystallization composition and conditions (inputs) on key microstructural characteristics (outputs) of faujasite type zeolites (structure types FAU, EMT, and their intergrowths), which are widely used zeolite catalysts and adsorbents. The utility of ML (in particular, Geometric Harmonics) toward learning input-output relationships of interest is demonstrated, and a comparison with Neural Networks and Gaussian Process Regression, as alternative approaches, is provided. Through ML, synthesis conditions were identified to enhance the Si/Al ratio of high purity FAU zeolite to the hitherto highest level (i.e., Si/Al = 3.5) achieved via direct (not seeded), and organic structure-directing-agent-free synthesis from sodium aluminosilicate sols. The analysis of the ML algorithms' results offers the insight that reduced Na2O content is key to formulating FAU materials with high Si/Al ratio. An acid catalyst prepared by partial ion exchange of the high-Si/Al-ratio FAU (Si/Al = 3.5) exhibits improved proton reactivity (as well as specific activity, per unit mass of catalyst) in propane cracking and dehydrogenation compared to the catalyst prepared from the previously reported highest Si/Al ratio (Si/Al = 2.8).

13.
Angew Chem Int Ed Engl ; 62(25): e202217439, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36859700

RESUMO

A photocatalyst TiO2 /Ti-BPDC-Pt is developed with a self-grown TiO2 /Ti-metal-organic framework (MOF) heterojunction, i.e., TiO2 /Ti-BPDC, and selectively anchored high-density Pt single-atomic cocatalysts on Ti-BPDC for photocatalytic hydrogen evolution. This intimate heterojunction, growing from the surface pyrolytic reconstruction of Ti-BPDC, works in a direct Z-scheme, efficiently separating electrons and holes. Pt is selectively anchored on Ti-BPDC by ligands and is found in the form of single atoms with loading up to 1.8 wt %. The selective location of Pt is the electron-enriched domain of the heterojunction, which further enhances the utilization of the separated electrons. This tailored TiO2 /Ti-BPDC-Pt shows a significantly enhanced activity of 12.4 mmol g-1 h-1 compared to other TiO2 - or MOF-based catalysts. The structure-activity relationship further proves the balance of two simultaneously exposed domains of heterojunctions is critical to fulfilling this kind of catalyst.


Assuntos
Estruturas Metalorgânicas , Titânio , Engenharia , Hidrogênio
14.
ACS Appl Mater Interfaces ; 14(33): 37637-37651, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35969512

RESUMO

Converting CO2 into value-added chemicals and fuels is one of the promising approaches to alleviate CO2 emissions, reduce the dependence on nonrenewable energy resources, and minimize the negative environmental effect of fossil fuels. This work used density functional theory (DFT) calculations combined with microkinetic modeling to provide fundamental insight into the mechanisms of CO2 hydrogenation to hydrocarbons over the iron carbide catalyst, with a focus on understanding the energetically favorable pathways and kinetic controlling factors for selective hydrocarbon production. The crystal orbital Hamiltonian population analysis demonstrated that the transition states associated with O-H bond formation steps within the path are less stable than those of C-H bond formation, accounting for the observed higher barriers in O-H bond formation from DFT. Energetically favorable pathways for CO2 hydrogenation to CH4 and C2H4 products were identified which go through an HCOO intermediate, while the CH* species was found to be the key C1 intermediate over χ-Fe5C2(510). The microkinetic modeling results showed that the relative selectivity to CH4 is higher than C2H4 in CO2 hydrogenation, but the trend is opposite under CO hydrogenation conditions. The major impact on C2 hydrocarbon production is attributed to the high surface coverage of O* from CO2 conversion, which occupies crucial active sites and impedes C-C couplings to C2 species over χ-Fe5C2(510). The coexistence of iron oxide and carbide phases was proposed and the interfacial sites created between the two phases impact CO2 surface chemistry. Adding potassium into the Fe5C2 catalyst accelerates O* removal from the carbide surface, enhances the stability of the iron carbide catalyst, thus, promotes C-C couplings to hydrocarbons.

15.
Angew Chem Int Ed Engl ; 61(40): e202208904, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35945151

RESUMO

Photoreduction of CO2 to C2+ solar fuel is a promising carbon-neutral technology for renewable energy. This strategy is challenged by its low productivity due to low efficiency in multielectron utilization and slow C-C coupling kinetics. This work reports a dual-metal photocatalyst consisting of atomically dispersed indium and copper anchored on polymeric carbon nitride (InCu/PCN), on which the photoreduction of CO2 delivered an excellent ethanol production rate of 28.5 µmol g-1 h-1 with a high selectivity of 92 %. Coupled experimental investigation and DFT calculations reveal the following mechanisms underpinning the high performance of this catalyst. Essentially, the In-Cu interaction enhances the charge separation by accelerating charge transfer from PCN to the metal sites. Indium also transfers electrons to neighboring copper via Cu-N-In bridges, increasing the electron density of copper active sites. Furthermore, In-Cu dual-metal sites promote the adsorption of *CO intermediates and lower the energy barrier of C-C coupling.

16.
Inorg Chem ; 61(30): 11939-11948, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35857023

RESUMO

Selectively anchoring active centers on the external surface for forming highly exposed acid sites is a highly desirable but challenging task in zeolite catalyst synthesis. Herein, a defect-guided etching-regrowth strategy is rationally designed for facilely positioning Sn Lewis acid sites on the outer surface of the Sn-B-Beta while fabricating a bifunctional hierarchical structure. The synthesis was conducted by hydrothermal treatment of the as-made B-Beta (uncalcined), which has intrinsic defects of the BEA structure, with Sn source and basic organic structure directing agent (SDA). Under a moderate SDA concentration, with blocked micropore channels, such SDA-triggered etching-regrowth will proceed along the defect defined pathway, which ensures Sn selectively anchored on the external surface. Moreover, this methodology has exclusively introduced tetrahedrally coordinated framework Sn with open Sn sites as the predominated species. Mono- and disaccharide isomerizations in ethanol over different Sn-Beta catalysts proved the prominent advantages of the hierarchical structure with highly exposed and synergetic acid sites.

17.
Comput Biol Med ; 147: 105690, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687927

RESUMO

BACKGROUND AND OBJECTIVES: Sleeping cortical electroencephalogram (EEG) has the potential for depression detection, for different sleep structure and cortical connection have been proved in depressed patients. However, the operation of multi-channel sleep EEG recording is cumbersome and requires laboratory equipment and professional sleep technician. Here, we focus on the depression detection using minimal sleep EEG channels. METHODS: Sixteen channels of EEG data of 30 patients with depression and 30 age-matched normal controls were recorded during sleep. Power spectral density of each single EEG channel was calculated, followed by measuring the symbolic transfer entropy (STE) and weighed phase lag index (WPLI) between EEG channel pairs in various frequency bands. Thereafter, these features were evaluated by F-score in the two-way classification (depression vs. control) of 30-s sleep EEG segments. Based on the F-score, entropy method was introduced to calculate the weight which could further assess the classification ability of various EEG channels or channel pairs. Finally, machine learning was implemented to verify the important EEG channels or channel pairs in depression diagnosis. RESULTS: The features characterizing the inter-hemispheric connectivity in the posterior lobe, especially in the temporal lobe, showed high classification capacity. The classification accuracy of using two and four EEG channels in the temporal lobe were 97.96% and 99.61%, respectively. CONCLUSIONS: This study showed the possibility of using only a few sleep EEG channels for depression screening, which may greatly facilitate the diagnosis of depression outside the hospital.


Assuntos
Depressão , Eletroencefalografia , Depressão/diagnóstico , Eletroencefalografia/métodos , Entropia , Humanos , Aprendizado de Máquina , Sono
18.
ACS Appl Mater Interfaces ; 14(17): 19315-19323, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437981

RESUMO

Nanocarbons have shown great potential as a sustainable alternative to metal catalysts, but their powder form limits their industrial applications. The preparation of nanocarbon-based monolithic catalysts is a practical approach for overcoming the resulting pressure drop associated with their powder form. In our previous work, a ploycation-mediated approach was used to successfully prepare nanocarbon-containing monoliths. Unfortunately, because there are no macropores in the monolith, it needs to be crashed into millimeter-sized particles before application. Therefore, developing a facile method for preparing mechanically robust nanocarbon-based macroporous monolithic catalysts is vital but still challenging. Herein, evoked by swallows building their nests, we report an approach for successfully preparing a mechanically robust nanodiamond-based macroporous monolith catalyst by plastering melamine sponge (MS) with a slurry composed of nanodiamonds (NDs) and poly(imidazolium-methylene) chloride (PImM) followed by an annealing process. The macroporous monolith catalyst (ND/NCMS-NCPImM) containing NDs well dispersed in N-doped carbon is mechanically robust with enriched macroscopic pores. It exhibits outstanding catalysis toward ethylbenzene to styrene through a direct dehydrogenation reaction with a high styrene rate in a steady state (5.50 mmol g-1 h-1) and high styrene selectivity (99.5%). ND/NCMS-NCPImM shows much higher activity than powder ND by 1.9 fold. In addition, this work solves the significant problem of large pressure drop encountered with conventional powdered nanocarbon catalysts in the flow reactor. This work not only creates an excellent nanodiamond-based macroporous monolithic ethylbenzene direct dehydrogenation catalyst but also presents a promising avenue for preparing other macroporous monolithic catalysts for diverse transformations.

19.
ChemSusChem ; 15(14): e202200747, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35475549

RESUMO

Self-assembled spheres of silico-phospho-aluminum nanosheets were synthesized with the addition of l-arginine and evaluated as catalysts for the valorization of furfuryl alcohol to fuel additives. Adding the amino acid, a bio-derived additive, contributed to higher external specific surface area and more active sites, featuring a simple, environmentally friendly, and feasible strategy to regulate the growth of nanosheets. Herein, in the reaction of furfuryl alcohol with ethanol, the performance of silico-phospho-aluminum nanosheets was significantly improved compared with typical silicon phosphorus aluminum catalyst SAPO-34. The yield of ethyl levulinate with the use of silico-phospho-aluminum nanosheets was 7.8 times higher than for SAPO-34, and meanwhile the amount of undesirable byproduct diethyl ether was decreased by two orders of magnitude and negligibly produced compared with SAPO-34. Moreover, replacing part of aluminum isopropoxide with aluminum sulfate as aluminum source could introduce sulfate in situ in the process of catalyst synthesis and increase the amount of acid sites on the catalyst.


Assuntos
Alumínio , Aminoácidos , Catálise , Furanos/química
20.
Sci Adv ; 8(5): eabm3629, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119927

RESUMO

Identifying the dynamic structure of heterogeneous catalysts is crucial for the rational design of new ones. In this contribution, the structural evolution of Fe(0) catalysts during CO2 hydrogenation to hydrocarbons has been investigated by using several (quasi) in situ techniques. Upon initial reduction, Fe species are carburized to Fe3C and then to Fe5C2. The by-product of CO2 hydrogenation, H2O, oxidizes the iron carbide to Fe3O4. The formation of Fe3O4@(Fe5C2+Fe3O4) core-shell structure was observed at steady state, and the surface composition depends on the balance of oxidation and carburization, where water plays a key role in the oxidation. The performance of CO2 hydrogenation was also correlated with the dynamic surface structure. Theoretical calculations and controll experiments reveal the interdependence between the phase transition and reactive environment. We also suggest a practical way to tune the competitive reactions to maintain an Fe5C2-rich surface for a desired C2+ productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...