Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
13.
Nanomaterials (Basel) ; 8(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104543

RESUMO

Nanocrystal solar cells (NCs) allow for large scale solution processing under ambient conditions, permitting a promising approach for low-cost photovoltaic products. Although an up to 10% power conversion efficiency (PCE) has been realized with the development of device fabrication technologies, the open circuit voltage (Voc) of CdTe NC solar cells has stagnated below 0.7 V, which is significantly lower than most CdTe thin film solar cells fabricated by vacuum technology (around 0.8 V~0.9 V). To further improve the NC solar cells' performance, an enhancement in the Voc towards 0.8⁻1.0 V is urgently required. Given the unique processing technologies and physical properties in CdTe NC, the design of an optimized band alignment and improved junction quality are important issues to obtain efficient solar cells coupled with high Voc. In this work, an efficient method was developed to improve the performance and Voc of solution-processed CdTe nanocrystal/TiO2 hetero-junction solar cells. A thin layer of solution-processed CdS NC film (~5 nm) as introduced into CdTe NC/TiO2 to construct hetero-junction solar cells with an optimized band alignment and p-n junction quality, which resulted in a low dark current density and reduced carrier recombination. As a result, devices with improved performance (5.16% compared to 2.63% for the control device) and a Voc as high as 0.83 V were obtained; this Voc value is a record for a solution-processed CdTe NC solar cell.

14.
Sensors (Basel) ; 15(11): 27804-31, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26540056

RESUMO

Many research groups in academia and industry are focusing on the performance improvement of electronic nose (E-nose) systems mainly involving three optimizations, which are sensitive material selection and sensor array optimization, enhanced feature extraction methods and pattern recognition method selection. For a specific application, the feature extraction method is a basic part of these three optimizations and a key point in E-nose system performance improvement. The aim of a feature extraction method is to extract robust information from the sensor response with less redundancy to ensure the effectiveness of the subsequent pattern recognition algorithm. Many kinds of feature extraction methods have been used in E-nose applications, such as extraction from the original response curves, curve fitting parameters, transform domains, phase space (PS) and dynamic moments (DM), parallel factor analysis (PARAFAC), energy vector (EV), power density spectrum (PSD), window time slicing (WTS) and moving window time slicing (MWTS), moving window function capture (MWFC), etc. The object of this review is to provide a summary of the various feature extraction methods used in E-noses in recent years, as well as to give some suggestions and new inspiration to propose more effective feature extraction methods for the development of E-nose technology.

15.
Sensors (Basel) ; 15(7): 15198-217, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26131672

RESUMO

In this paper, a novel feature extraction approach which can be referred to as moving window function capturing (MWFC) has been proposed to analyze signals of an electronic nose (E-nose) used for detecting types of infectious pathogens in rat wounds. Meanwhile, a quantum-behaved particle swarm optimization (QPSO) algorithm is implemented in conjunction with support vector machine (SVM) for realizing a synchronization optimization of the sensor array and SVM model parameters. The results prove the efficacy of the proposed method for E-nose feature extraction, which can lead to a higher classification accuracy rate compared to other established techniques. Meanwhile it is interesting to note that different classification results can be obtained by changing the types, widths or positions of windows. By selecting the optimum window function for the sensor response, the performance of an E-nose can be enhanced.


Assuntos
Nariz Eletrônico , Gases/análise , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Animais , Bactérias/química , Bactérias/metabolismo , Gases/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...