Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 22: 101264, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38468635

RESUMO

Workshop with different fermentation years plays an essential role in the yield and quality of Baijiu. In actual production, the quality of base Baijiu in newly built workshop is inferior to the older one. In this study, the microbiota of workshop environment and fermentation process from two workshops namely N (ferment 2 years) and O (ferment 20 years) and flavor compounds were studied during Xiasha round. Results showed workshop O accumulated more environmental microorganisms and fungi including P. kudriavzevii, Wickerhamomyces anomalus and Saccharomyces sp mainly came from ground. Yeasts including Pichia, Cyberlindnera, Wickerhamomyces and Candida were responsible for flavor substances formation in O while Saccharopolyspora was in N. This study for the first time explored the reasons for the brewing differences among N and O workshop from perspectives of workshop environment, microbial community and flavor substances, providing new ideas for guiding production as well as improvement of Baijiu quality.

2.
Food Chem X ; 20: 100981, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144799

RESUMO

Moisture is essential in microbiota succession and flavor formation during baijiu fermentation. However, it remains unknown how moisture content affects microbiota, metabolism, and their relationship. Here, we compared the difference in volatiles, microbiota characteristics, and potential functions with different initial moisture contents (50 %, 55 %, 60 %, 65 %, 70 %). Results showed that the ratio of ethyl acetate to ethyl lactate and total volatile compounds content increased as the moisture content was elevated from 50 % to 70 %. As increasing moisture content, fermentation system microbiota dominated by Lactobacillus was formed more rapidly. Lactobacillus, Dekkera, and Pediococcus were positively correlated with moisture, promoting the production of propanol, acetic acid, butyric acid, and 2-butanol. The complexity and stability of ecological networks enhanced as moisture content increased (R2 = 0.94, P = 0.004). Our study revealed that moisture-drive microbiota was a critical contributor to flavor formation, providing the theoretical basis for moisture control to regulate flavor compounds.

3.
Foods ; 12(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37048315

RESUMO

Terpenoids not only are an important health factor in baijiu but also contribute to the elegance and finesse of baijiu, and actinomycetes act as an important source of terpenoids in baijiu. Four strains of actinomycetes-Streptomyces violascens (SPQ1), S. sampsonii (SPS1), S. thermophilus (SPG1), and S. griseus (SPH1)-obtained from the Daqu, pit mud, fermented grains and air, respectively, in the production of baijiu were used in solid-state and liquid fermentation with five brewing raw materials as the substrates. The terpenoids in the metabolites were analyzed and compared using gas chromatography-mass spectrometry (GC-MS). We found that the four strains of actinomycetes produced 31 terpenoids from the hydrolysates of five fermentation substrates during liquid fermentation, and the total terpenoid content was 989.94 µg/kg in the fermentation products. After 28 days of solid-state fermentation, the four actinomycete strains produced 64 terpenoids using the five fermentation substrates, and the total terpenoid content was 23,651.52 µg/kg in the fermentation products. The different fermentation substrates and fermentation methods have a great influence on the terpenoids produced by actinomycetes.

4.
Appl Microbiol Biotechnol ; 107(11): 3717-3727, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37097503

RESUMO

To broaden knowledge about the oenological characteristics of Starmerella bacillaris, the influence of two Chinese indigenous S. bacillaris strains on the conventional enological parameters and volatile compounds of Cabernet Sauvignon wines were investigated under different inoculation protocols (single inoculation and simultaneous/sequential inoculation with the commercial Saccharomyces cerevisiae EC1118). The results showed that the two S. bacillaris strains could complete alcohol fermentation alone under high sugar concentrations while increasing the content of glycerol and decreasing the content of acetic acid. Compared with wines fermented by EC1118 single inoculation, S. bacillaris single inoculation and S. bacillaris/EC1118 sequential inoculation increased the contents of isobutanol, ethyl isobutanoate, terpenes, and ketones and decreased the contents of isopentanol, phenylethyl alcohol, fatty acids, acetate esters, and total ethyl esters. Furthermore, for S. bacillaris/EC1118 simultaneous inoculation, the concentrations of ethyl esters were increased, contributing to a higher score of "floral" and "fruity" notes in agreement with sensory analysis. KEY POINTS: • S. bacillaris single and simultaneous/sequential inoculation. • Conventional enological parameters and volatile compounds were investigated. • S. bacillaris/EC1118 simultaneous fermentation increased ethyl esters.


Assuntos
Saccharomycetales , Vinho , Ácido Acético/análise , Fermentação , Saccharomyces cerevisiae , Vinho/microbiologia
5.
Sci Total Environ ; 855: 158696, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108833

RESUMO

Thin stillage, rich in glucose and lactate, can seriously pollute water resources when directly discharged into the natural environment. Microbial fuel cells (MFC), as a green and sustainable technology, could utilize exoelectrogens to break down organics in wastewater and harvest electricity. Nevertheless, Shewanella oneidensis MR-1, cannot utilize thin stillage for efficient power generation. Here, to enable S. oneidensis to co-utilize glucose and lactate from thin stillage, an engineered S. oneidensis G7∆RSL1 was first created by constructing glucose metabolism pathway, promoting glucose and lactate co-utilization, and enhancing biofilm formation. Then, to enhance biofilm conductivity, we constructed a 3D self-assembled G7∆RSL1-rGO/CNT biohybrid with maximum power density of 560.4 mW m-2 and 373.7 mW m-2 in artificial and actual thin stillage, respectively, the highest among the reported genetically engineered S. oneidensis with thin stillage as carbon source. This study provides a new strategy to facilitate practical applications of MFC in wastewater remediation and efficient power recovery.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Ácido Láctico/metabolismo , Glucose/metabolismo , Águas Residuárias , Shewanella/metabolismo , Eletricidade
6.
Front Microbiol ; 13: 902597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711782

RESUMO

To explore the potential application of non-Saccharomyces yeasts screened from Baijiu fermentation environment in winemaking, the effect of four Baijiu non-Saccharomyces yeasts (two Zygosaccharomyces bailii and two Pichia kudriavzevii) sequentially fermented with Saccharomyces cerevisiae on the physicochemical parameters and volatile compounds of wine was analyzed. The results indicated that there was no obvious antagonism between S. cerevisiae and Z. bailli or P. kudriavzevii in sequential fermentations, and all strains could be detected at the end of alcoholic fermentation. Compare with S. cerevisiae pure fermentation, Z. bailii/S. cerevisiae sequential fermentations significantly reduced higher alcohols, fatty acids, and ethyl esters and increased acetate esters; P. kudriavzevii/S. cerevisiae sequential fermentations reduced the contents of C6 alcohols, total higher alcohols, fatty acids, and ethyl esters and significantly increased the contents of acetate esters (especially ethyl acetate and 3-methylbutyl acetate). Sequential fermentation of Baijiu non-Saccharomyces yeast and S. cerevisiae improved the flavor and quality of wine due to the higher ester content and lower concentration of higher alcohols and fatty acids, non-Saccharomyces yeasts selected from Baijiu fermentation environment have potential applications in winemaking, which could provide a new strategy to improve wine flavor and quality.

7.
Biotechnol Lett ; 43(8): 1607-1616, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33937967

RESUMO

OBJECTIVES: Development of a system for direct lactose to ethanol fermentation provides a market for the massive amounts of underutilized whey permeate made by the dairy industry. For this system, glucose and galactose metabolism were uncoupled in Saccharomyces cerevisiae by deleting two negative regulatory genes, GAL80 and MIG1, and introducing the essential lactose hydrolase LAC4 and lactose transporter LAC12, from the native but inefficient lactose fermenting yeast Kluyveromyces marxianus. RESULTS: Previously, integration of the LAC4 and LAC12 genes into the MIG1 and NTH1 loci was achieved to construct strain AY-51024M. Low rates of lactose conversion led us to generate the Δmig1Δgal80 diploid mutant strain AY-GM from AY-5, which exhibited loss of diauxic growth and glucose repression, subsequently taking up galactose for consumption at a significantly higher rate and yielding higher ethanol concentrations than strain AY-51024M. Similarly, in cheese whey permeate powder solution (CWPS) during three, repeated, batch processes in a 5L bioreactor containing either 100 g/L or 150 g/L lactose, the lactose uptake and ethanol productivity rates were both significantly greater than that of AY-51024M, while the overall fermentation times were considerably lower. CONCLUSIONS: Using the Cre-loxp system for deletion of the MIG1 and GAL80 genes to relieve glucose repression, and LAC4 and LAC12 overexpression to increase lactose uptake and conversion provides an efficient basis for yeast fermentation of whey permeate by-product into ethanol.


Assuntos
Fermentação/genética , Proteínas Fúngicas/genética , Glucose/metabolismo , Lactose , Saccharomyces cerevisiae , Reatores Biológicos/microbiologia , Etanol/metabolismo , Kluyveromyces/genética , Lactose/genética , Lactose/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Soro do Leite/metabolismo
8.
Food Res Int ; 142: 110188, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33773664

RESUMO

Ribonucleic acid (RNA) and its degradation products are important functional components widely used in the food industry. Transcription analysis was used to explore the genetic mechanism underlying nucleic acid synthesis in the chemical mutant Saccharomyces cerevisiae strain BY23-195 with high nucleic acid content. Results showed that ribosome biogenesis, meiosis, RNA transport, mitogen-activated protein kinase (MAPK) signaling pathway, tryptophan metabolism, carbon metabolism, and longevity regulating pathway are closely related to the high nucleic acid metabolism of S. cerevisiae. Fourteen most promising genes were selected to evaluate the effect of single-gene deletion or overexpression on the RNA synthesis of S. cerevisiae. Compared with the RNA content of the parent strain BY23, that of mutant strains BY23-HXT1, BY23-ΔGSP2 and BY23-ΔCTT1 increased by 8.19%, 11.60% and 14.00%, respectively. The possible reason why HXT1, GSP2, and CTT1 affect RNA content is by regulating cell fitness. This work was the first to report that regulating the transcription of HXT1, GSP2, and CTT1 could increase the RNA content of S. cerevisiae. This work also provides valuable knowledge on the genetic mechanism of high nucleic acid synthesis in S. cerevisiae and new strategies for increasing its RNA content.


Assuntos
Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae , Proteínas Quinases Ativadas por Mitógeno , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
9.
ACS Synth Biol ; 10(3): 495-504, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33576609

RESUMO

Ethyl acetate can be synthesized from acetyl-CoA and ethanol via a reaction by alcohol acetyltransferases (AATase) in yeast. In order to increase the yield of acetyl-CoA, different terminators were used to optimize the expressions of acetyl-CoA synthetase (ACS1/2) and aldehyde dehydrogenase (ALD6) to increase the contents of acetyl-CoA in Saccharomyces cerevisiae. ATF1 coding AATase was coexpressed in expression cassettes of ACS1/ACS2 and ALD6 to promote the carbon flux toward ethyl acetate from acetyl-CoA. Further to improve ethyl acetate production, four heterologous AATase including HuvEAT1 (Hanseniaspora uvarum), KamEAT1 (Kluyveromyces marxianus), VAAT (wild strawberry), and AeAT9 (kiwifruit) were introduced. Subsequently mitochondrial transport and utilization of pyruvate and acetyl-CoA were impeded to increase the ethyl acetate accumulation in cytoplasm. Under the optimal fermentation conditions, the engineered strain of PGAeΔPOR2 produced 1.69 g/L ethyl acetate, which was the highest value reported to date by metabolic engineering methods.


Assuntos
Acetatos/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Acetatos/química , Acetilcoenzima A/biossíntese , Aciltransferases/genética , Aciltransferases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Hanseniaspora/enzimologia , Kluyveromyces/enzimologia , Ácido Pirúvico/metabolismo
10.
J Agric Food Chem ; 69(5): 1637-1646, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502852

RESUMO

The n-propanol produced by Saccharomyces cerevisiae has a remarkable effect on the taste and flavor of Chinese Baijiu. The n-propanol metabolism-related genes were deleted to evaluate the role in the synthesis of n-propanol to ascertain the key genes and pathways for the production of n-propanol by S. cerevisiae. The results showed that CYS3, GLY1, ALD6, PDC1, ADH5, and YML082W were the key genes affecting the n-propanol metabolism in yeast. The n-propanol concentrations of α5ΔGLY1, α5ΔCYS3, and α5ΔALD6 increased by 121.75, 22.75, and 17.78%, respectively, compared with α5. The n-propanol content of α5ΔPDC1, α5ΔADH5, and α5ΔYML082W decreased by 24.98, 8.35, and 8.44%, respectively, compared with α5. The contents of intermediate metabolites were measured, and results showed that the mutual transformation of glycine and threonine in the threonine pathway and the formation of propanal from 2-ketobutyrate were the core pathways for the formation of n-propanol. Additionally, YML082W played important role in the synthesis of n-propanol by directly producing 2-ketobutyric acid through l-homoserine. This study provided valuable insights into the n-propanol synthesis in S. cerevisiae and the theoretical basis for future optimization of yeast strains in Baijiu making.


Assuntos
1-Propanol/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Genes Reguladores , Redes e Vias Metabólicas , Proteínas de Saccharomyces cerevisiae/metabolismo , Vinho/análise , Vinho/microbiologia
11.
Food Microbiol ; 95: 103713, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397627

RESUMO

Higher alcohols are important flavor substance in alcoholic beverages. The content of α-amino nitrogen (α-AN) in the fermentation system affects the formation of higher alcohols by Saccharomyces cerevisiae. In this study, the effect of α-AN concentration on the higher alcohol productivity of yeast was explored, and the mechanism of this effect was investigated through metabolite and transcription sequence analyses. We screened 12 most likely genes and constructed the recombinant strain to evaluate the effect of each gene on high alcohol formation. Results showed that the AGP1, GDH1, and THR6 genes were important regulators of higher alcohol metabolism in S. cerevisiae. This study provided knowledge about the metabolic pathways of higher alcohols and gave an important reference for the breeding of S. cerevisiae with low-yield higher alcohols to deal with the fermentation system with different α-AN concentrations in the brewing industry.


Assuntos
Álcoois/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Aromatizantes , Perfilação da Expressão Gênica , Genes Reguladores , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Biomed Res Int ; 2020: 6802512, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204707

RESUMO

The higher alcohols produced by Saccharomyces cerevisiae exert remarkable influence on the taste and flavour of Chinese Baijiu. In order to study the regulation mechanism of amino acid metabolism genes on higher alcohol production, eight recombinant strains with amino acid metabolism gene deletion were constructed. The growth, fermentation performance, higher alcohol production, and expression level of genes in recombinant and original α5 strains were determined. Results displayed that the total higher alcohol concentration in α5ΔGDH1 strain decreased by 27.31% to 348.68 mg/L compared with that of α5. The total content of higher alcohols in α5ΔCAN1 and α5ΔGAT1 strains increased by 211.44% and 28.36% to 1493.96 and 615.73 mg/L, respectively, compared with that of α5. This study is the first to report that the CAN1 and GAT1 genes have great influence on the generation of higher alcohols. The results demonstrated that amino acid metabolism plays a substantial role in the metabolism of higher alcohols by S. cerevisiae. Interestingly, we also found that gene knockout downregulated the expression levels of the knocked out gene and other genes in the recombinant strain and thus affected the formation of higher alcohols by S. cerevisiae. This study provides worthy insights for comprehending the metabolic mechanism of higher alcohols in S. cerevisiae for Baijiu fermentation.


Assuntos
Álcoois/metabolismo , Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/microbiologia , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/genética , Fermentação , Microbiologia de Alimentos , Fatores de Transcrição GATA/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glutamato Descarboxilase/genética , Desidrogenase de Glutamato (NADP+)/genética , Desidrogenase de Glutamato (NADP+)/metabolismo , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transaminases/genética , Transaminases/metabolismo
13.
J Agric Food Chem ; 68(47): 13863-13870, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166457

RESUMO

Ethyl lactate is an important flavor substance in baijiu, and it is also one of the common raw materials in the production of flavors and spices. In this study, we first established the ethyl lactate biosynthesis pathway in Saccharomyces cerevisiae α(L) by introducing propionyl coenzyme A transferase (Pct) and alcohol acyltransferase (AAT), and the results showed that strain α(L)-CP-Ae produced the most ethyl lactate 239.53 ± 5.45 mg/L. Subsequently, the copy number of the Pctcp gene and AeAT9 gene was increased, and the modified strain α(L)-tCP-tAe produced 346.39 ± 3.99 mg/L ethyl lactate. Finally, the porin gene (por2) and the mitochondrial pyruvate carrier gene (MPC2) were knocked to impede mitochondrial transport of pyruvate, and the final modified strain α(L)-tCP-tAeΔpor2 produced ethyl lactate 420.48 ± 6.03 mg/L.


Assuntos
Lactatos , Saccharomyces cerevisiae , Vias Biossintéticas , Aromatizantes , Saccharomyces cerevisiae/genética
14.
Appl Microbiol Biotechnol ; 104(18): 7901-7913, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715361

RESUMO

Ribonucleic acid (RNA) and its degradation products are widely used in the food industry. In this study, we constructed Saccharomyces cerevisiae mutants with FHL1, IFH1, SSF1, and SSF2 overexpression and HRP1 deletion, individually to evaluate the effect on RNA production. The RNA content of recombinant strains W303-1a-FHL1, W303-1a-SSF2, and W303-1a-ΔHRP1 was increased by 14.94%, 24.4%, and 19.36%, respectively, compared with the RNA content of the parent strain. However, W303-1a-IFH1 and W303-1a-SSF1 showed no significant change in RNA production compared with the parent strain. IFH1 and FHL1 encode Ifh1p and Fhl1p, respectively, which combine to form a complex that plays a key role in the transcription of the ribosomal protein (RP) gene. Ssf2p, encoded by SSF2, plays an important role in ribosome biosynthesis and Hrp1p is a negative regulator of cell growth in S. cerevisiae. Subsequently, a high RNA production strain, W112, was constructed by simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1. The RNA content of W112 was 38.8% higher than the parent strain. The growth performance, RP transcription levels, and rRNA content were also investigated in the recombinant strains. This study provides a new strategy for the construction of S. cerevisiae strains containing large amounts of RNA, and it will make a significant contribution to progress in the nucleic acid industry. KEY POINTS: • Simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1 can significantly increases RNA production. • The production of RNA increased by 38.8% in Saccharomyces cerevisiae. • The cell size and growth rate of the strains with higher RNA content also increased.


Assuntos
Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transativadores , Fatores de Poliadenilação e Clivagem de mRNA , Fatores de Transcrição Forkhead/metabolismo , Regulação Fúngica da Expressão Gênica , RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transcrição Gênica
15.
Food Chem ; 321: 126691, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251922

RESUMO

Low-alcohol Huangjiu (LAH), which contains reduced contents of ethanol and higher alcohols, is prepared by diluting original Huangjiu that has a high ethanol content, which leads to a weakened flavor (i.e., acidity). To increase acidity and reduce higher alcohols level in LAH, the gene ALD6 encoding aldehyde dehydrogenase was expressed in yeast HJ-1 under the control of the pPGK1 promoter and terminators with varying activities (tGIC1, tPGK1 and tCPS1) by scarless replacement at BAT2 locus, yielding the engineered strains HJΔB-AG, HJΔB-AP, and HJΔB-AC. The acetate concentration produced by HJΔB-AG, HJΔB-AP, and HJΔB-AC was 1.26-, 1.84-, and 2.51-fold of that of HJ-1, respectively. Furthermore, the concentration of higher alcohols produced by HJΔB-AG, HJΔB-AP, and HJΔB-AC decreased by 39.91%, 45.55%, and 52.80%, respectively. This study resulted in the creation of promising recombinant yeast strains and introduced a method that can be used for the high-quality production of LAH by acid-producing Saccharomyces cerevisiae.


Assuntos
Etanol/metabolismo , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Acetatos/metabolismo , Álcoois , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Fermentação , Microbiologia de Alimentos , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiões Terminadoras Genéticas , Transaminases/genética , Transaminases/metabolismo
16.
J Agric Food Chem ; 68(14): 4252-4260, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186186

RESUMO

Ethyl butyrate is one of the most important flavor substances in Chinese Baijiu and is also an ingredient in various daily-use chemical essences and food flavorings. In this study, to produce ethyl butyrate, we first introduced a butyryl-CoA synthesis pathway into Saccharomyces cerevisiae. Subsequently, three different alcohol acyltransferases, SAAT, VAAT, and CmAAT, were separately introduced into S. cerevisiae to catalyze the reaction of butyryl-CoA with ethanol to produce ethyl butyrate, and the results showed that strain EBS with SAAT produced the most ethyl butyrate (20.06 ± 2.23 mg/L). Furthermore, as the reaction catalyzed by Bcd to produce butyryl-CoA from crotonyl-CoA is a rate-limiting step, we replaced Bcd with Ter, and the modified strain EST produced 77.33 ± 4.79 mg/L ethyl butyrate. Finally, the copy numbers of Ter and SAAT were further increased, and the resulting modified strain EST-dST produced 99.65 ± 7.32 mg/L ethyl butyrate.


Assuntos
Butiratos/química , Aromatizantes/química , Saccharomyces cerevisiae/metabolismo , Acil Coenzima A/metabolismo , Bebidas Alcoólicas/microbiologia , Sequência de Bases , Vias Biossintéticas , Escherichia coli/metabolismo , Etanol/metabolismo , Fermentação , Microbiologia Industrial , Cinética , Engenharia Metabólica , Proteínas/metabolismo
17.
Appl Microbiol Biotechnol ; 103(12): 4917-4929, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31073877

RESUMO

Undesirable flavor caused by excessive higher alcohols restrains the development of the wheat beer industry. To clarify the regulation mechanism of the metabolism of higher alcohols in wheat beer brewing by the top-fermenting yeast Saccharomyces cerevisiae S17, the effect of temperature on the fermentation performance and transcriptional levels of relevant genes was investigated. The strain S17 produced 297.85 mg/L of higher alcohols at 20 °C, and the production did not increase at 25 °C, reaching about 297.43 mg/L. Metabolite analysis and transcriptome sequencing showed that the metabolic pathways of branched-chain amino acids, pyruvate, phenylalanine, and proline were the decisive factors that affected the formation of higher alcohols. Fourteen most promising genes were selected to evaluate the effects of single-gene deletions on the synthesis of higher alcohols. The total production of higher alcohols by the mutants Δtir1 and Δgap1 was reduced by 23.5 and 19.66% compared with the parent strain S17, respectively. The results confirmed that TIR1 and GAP1 are crucial regulatory genes in the metabolism of higher alcohols in the top-fermenting yeast. This study provides valuable knowledge on the metabolic pathways of higher alcohols and new strategies for reducing the amounts of higher alcohols in wheat beer.


Assuntos
Álcoois/metabolismo , Cerveja/microbiologia , Fermentação , Genes Reguladores , Saccharomyces cerevisiae/genética , Temperatura , Reatores Biológicos , Aromatizantes , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Paladar
18.
Front Microbiol ; 10: 409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936852

RESUMO

Microbial fuel cells (MFCs) are eco-friendly bio-electrochemical reactors that use exoelectrogens as biocatalyst for electricity harvest from organic biomass, which could also be used as biosensors for long-term environmental monitoring. Glucose and xylose, as the primary ingredients from cellulose hydrolyzates, is an appealing substrate for MFC. Nevertheless, neither xylose nor glucose can be utilized as carbon source by well-studied exoelectrogens such as Shewanella oneidensis. In this study, to harvest the electricity by rapidly harnessing xylose and glucose from corn stalk hydrolysate, we herein firstly designed glucose and xylose co-fed engineered Klebsiella pneumoniae-S. oneidensis microbial consortium, in which K. pneumoniae as the fermenter converted glucose and xylose into lactate to feed the exoelectrogens (S. oneidensis). To produce more lactate in K. pneumoniae, we eliminated the ethanol and acetate pathway via deleting pta (phosphotransacetylase gene) and adhE (alcohol dehydrogenase gene) and further constructed a synthesis and delivery system through expressing ldhD (lactate dehydrogenase gene) and lldP (lactate transporter gene). To facilitate extracellular electron transfer (EET) of S. oneidensis, a biosynthetic flavins pathway from Bacillus subtilis was expressed in a highly hydrophobic S. oneidensis CP-S1, which not only improved direct-contacted EET via enhancing S. oneidensis adhesion to the carbon electrode but also accelerated the flavins-mediated EET via increasing flavins synthesis. Furthermore, we optimized the ratio of glucose and xylose concentration to provide a stable carbon source supply in MFCs for higher power density. The glucose and xylose co-fed MFC inoculated with the recombinant consortium generated a maximum power density of 104.7 ± 10.0 mW/m2, which was 7.2-folds higher than that of the wild-type consortium (12.7 ± 8.0 mW/m2). Lastly, we used this synthetic microbial consortium in the corn straw hydrolyzates-fed MFC, obtaining a power density 23.5 ± 6.0 mW/m2.

19.
Sheng Wu Gong Cheng Xue Bao ; 35(3): 522-534, 2019 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-30912360

RESUMO

As a new beer fermentation technology, high temperature and high gravity fermentation has brought many benefits to brewery industry, but there are also a series of problems such as the decrease of yeast flocculation ability at the end of fermentation and the high concentration of higher alcohols. To increase yeast flocculation ability and reduce the production of higher alcohols in high temperature and high gravity fermentation of beer, BAT2 was replaced by the FLO5 expression cassette to obtain the mutant strain S6-BF2. Real-time quantitative PCR showed that the relative transcriptional level of FLO5 in S6-BF2 improved 17.8 times compared with that in S6. The flocculation ability of mutant S6-BF2 heightened by 63% compared to that of the original strain S6, and the concentration of higher alcohols decreased from 175.58 mg/L to 159.58 mg/L in high temperature and high gravity fermentation of beer. Moreover, the activity of mitochondrial branched-chain amino acid transferase was repressed, resulting in the production of higher alcohols of 142.13 mg/L, reduced by 18.4% compared to that of the original strain S6, meanwhile, the flocculation ability of mutant S6-BF2B1 kept unchanged compared to the mutant S6-BF2. The determination result of flavor compounds showed that the higher alcohols/ester ratio in beer was reasonable. This research has suggested an effective strategy for enhancing yeast flocculation ability and decreasing production of higher alcohols in high-temperature and high-gravity brewing.


Assuntos
Hipergravidade , Cerveja , Fermentação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Temperatura , Transaminases
20.
J Ind Microbiol Biotechnol ; 46(5): 601-612, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30715625

RESUMO

Beer foam stability, a key factor in evaluating overall beer quality, is influenced by proteinase A (PrA). Actin-severing protein cofilin and Golgi apparatus-localized Ca2+ ATPase Pmr1 are involved in protein sorting at the trans-Golgi network (TGN) in yeast Curwin et al. (Mol Biol Cell 23:2327-2338, 2012). To reduce PrA excretion into the beer fermentation broth, we regulated the Golgi apparatus sorting of PrA, thereby facilitating the delivery of more PrA to the vacuoles in the yeast cells. In the present study, the cofilin-coding gene COF1 and the Pmr1-coding gene PMR1 were overexpressed in the parental strain W303-1A and designated as W + COF1 and W + PMR1, respectively. The relative expression levels of COF1 in W + COF1 and PMR1 in W + PMR1 were 5.26- and 19.76-fold higher than those in the parental strain. After increases in the expression levels of cofilin and Pmr1 were confirmed, the PrA activities in the wort broth fermented with W + COF1, W + PMR1, and W303-1A were measured. Results showed that the extracellular PrA activities of W + COF1 and W + PMR1 were decreased by 9.24% and 13.83%, respectively, at the end of the main fermentation compared with that of W303-1A. Meanwhile, no apparent differences were found on the fermentation performance of recombinant and parental strains. The research uncovers an effective strategy for decreasing PrA excretion in Saccharomyces cerevisiae.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/metabolismo , Cerveja , ATPases Transportadoras de Cálcio/genética , Escherichia coli/metabolismo , Etanol/química , Fermentação , Regulação Fúngica da Expressão Gênica , Chaperonas Moleculares/metabolismo , Plasmídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Vacúolos , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...