Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(8): e0154924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953350

RESUMO

Metabolism in host cells can be modulated after viral infection, favoring viral survival or clearance. Here, we report that lipid droplet (LD) synthesis in host cells can be modulated by yin yang 1 (YY1) after porcine reproductive and respiratory syndrome virus (PRRSV) infection, resulting in active antiviral activity. As a ubiquitously distributed transcription factor, there was increased expression of YY1 upon PRRSV infection both in vitro and in vivo. YY1 silencing promoted the replication of PRRSV, whereas YY1 overexpression inhibited PRRSV replication. PRRSV infection led to a marked increase in LDs, while YY1 knockout inhibited LD synthesis, and YY1 overexpression enhanced LD accumulation, indicating that YY1 reprograms PRRSV infection-induced intracellular LD synthesis. We also showed that the viral components do not colocalize with LDs during PRRSV infection, and the effect of exogenously induced LD synthesis on PRRSV replication is nearly lethal. Moreover, we demonstrated that YY1 affects the synthesis of LDs by regulating the expression of lipid metabolism genes. YY1 negatively regulates the expression of fatty acid synthase (FASN) to weaken the fatty acid synthesis pathway and positively regulates the expression of peroxisome proliferator-activated receptor gamma (PPARγ) to promote the synthesis of LDs, thus inhibiting PRRSV replication. These novel findings indicate that YY1 plays a crucial role in regulating PRRSV replication by reprogramming LD synthesis. Therefore, our study provides a novel mechanism of host resistance to PRRSV and suggests potential new antiviral strategies against PRRSV infection.IMPORTANCEPorcine reproductive and respiratory virus (PRRSV) has caused incalculable economic damage to the global pig industry since it was first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. It is well known that viruses are parasitic pathogens, and the completion of their replication life cycle is highly dependent on host cells. A better understanding of host resistance to PRRSV infection is essential for developing safe and effective strategies to control PRRSV. Here, we report a crucial host antiviral molecule, yin yang 1 (YY1), which is induced to be expressed upon PRRSV infection and subsequently inhibits virus replication by reprogramming lipid droplet (LD) synthesis through transcriptional regulation. Our work provides a novel antiviral mechanism against PRRSV infection and suggests that targeting YY1 could be a new strategy for controlling PRRSV.


Assuntos
Gotículas Lipídicas , Vírus da Síndrome Respiratória e Reprodutiva Suína , Replicação Viral , Fator de Transcrição YY1 , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Gotículas Lipídicas/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Linhagem Celular , Metabolismo dos Lipídeos , Interações Hospedeiro-Patógeno
2.
Exp Ther Med ; 27(6): 269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756900

RESUMO

Multiple myeloma (MM) is a plasma cell clonal disease and these plasma cells can survive in the gut. The intestinal microbiota is a complex ecosystem and its dysfunction can release persistent stimulus signals that trigger genetic mutations and clonal evolution in the gut. The present study analyzed the intestinal microbiota in fecal samples of MM patients in high-altitude and cold regions of China using 16s rRNA sequencing and analyzed significantly enriched species at the phylum and genus levels. Although no significant difference in the alpha diversity was observed between the MM and control groups, a significant difference was noted in the beta diversity. A total of 15 significant differential bacteria at the genus level were found between the two groups, among which Bacteroides, Streptococcus, Lactobacillus and Alistipes were significantly enriched in the MM group. The present study also constructed a disease diagnosis model using Random Forest analysis and verified its accuracy using receiver operating characteristic analysis. In addition, using correlation analysis, it demonstrated that the composition of the intestinal microbiota in patients with MM was associated with complement levels. Notably, the present study predicted that the signaling and metabolic pathways of the intestinal microbiota affected MM progression through Kyoto Encyclopedia of Genes and Genomes functional analysis. The present study provides a new approach for the prevention and treatment of MM, in which the intestinal microbiota may become a novel therapeutic target for MM.

3.
Exp Ther Med ; 26(6): 545, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37928509

RESUMO

The present meta-analysis investigated the clinical value of serum matrix metalloproteinase (MMP)-9 levels in Coronavirus Disease 2019 (COVID-19) patients. Studies assessing the outcomes of patients with COVID-19 in correlation with the MMP-9 levels were retrieved from PubMed, Web of Science, EMBASE, Cochrane, WANFANG, and CNKI. A meta-analysis was performed to compare the serum MMP-9 levels between different patient groups: Severe vs. non-severe; acute respiratory distress syndrome (ARDS) vs. non-ARDS; non-survivors vs. survivors; neurologic syndrome vs. non-neurologic syndrome; and obese diabetic vs. non-obese diabetic. A total of 2,062 COVID-19-confirmed patients from 12 studies were included in this meta-analysis. The serum MMP-9 levels were significantly higher in patients with severe COVID-19 than in those with non-severe COVID-19 [weighted mean difference (WMD) 246.61 (95% confidence interval (CI), 115.86-377.36), P<0.001]. Patients with ARDS exhibited significantly higher MMP-9 levels than those without ARDS [WMD 248.55 (95% CI, 63.84-433.25), P<0.001]. The MMP-9 levels in the non-survivors did not significantly differ from those in the survivors [WMD 37.79 (95% CI, -18.08-93.65), P=0.185]. Patients with comorbidities, including neurological syndromes, and obese diabetic patients had significantly higher MMP-9 levels than those without comorbidities [WMD 170.73 (95% CI, 95.61-245.85), P<0.001]. Serum MMP-9 levels were associated with COVID-19 severity and may serve as a therapeutic target for improving the prognosis of patients with COVID-19.

4.
J Virol ; 97(9): e0084723, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681956

RESUMO

Porcine epidemic diarrhea virus (PEDV) leads to enormous economic losses for the pork industry. However, the commercial vaccines failed to fully protect against the epidemic strains. Previously, the rCH/SX/2016-SHNXP strain with the entire E protein and the rCH/SX/2015 strain with the deletion of 7-amino-acid (7-aa) at positions 23-29 in E protein were constructed and rescued. The pathogenicity assay indicated that rCH/SX/2015 is an attenuated strain, but rCH/SX/2016-SHNXP belongs to the virulent strains. Then, the recombination PEDV (rPEDV-EΔaa23-aa29)strain with a 7-aa deletion in the E protein was generated, using the highly virulent rCH/SX/2016-SHNXP strain (rPEDV-Ewt) as the backbone. Compared with the rPEDV-Ewt strain, the release and infectivity of the rPEDV-EΔaa23-aa29 strain were significantly reduced in vitro, but stronger interferon (IFN) responses were triggered both in vitro and in vivo. The pathogenicity assay showed that the parental strain resulted in severe diarrhea (100%) and death (100%) in all piglets. Compared with the parental strain group, rPEDV-EΔaa23-aa29 caused lower mortality (33%) and diminished fecal PEDV RNA shedding. At 21 days, all surviving pigs were challenged orally with rPEDV-Ewt. No pigs died in the two groups. Compared with the mock group, significantly delayed and milder diarrhea and reduced fecal PEDV RNA shedding were detected in the rPEDV-EΔaa23-aa29 group. In conclusion, the deletion of a 7-aa fragment in the E protein (EΔaa23-aa29) attenuated PEDV but retained its immunogenicity, which can offer new ideas for the design of live attenuated vaccines and provide new insights into the attenuated mechanism of PEDV. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets and remains a large challenge to the pork industry. Unfortunately, no safe and effective vaccines are available yet. The pathogenesis and molecular basis of the attenuation of PEDV remain unclear, which seriously hinders the development of PEDV vaccines. This study found that the rPEDV carrying EΔaa23-aa29 mutation in the E protein induced significantly higher IFN responses than the parental virus, partially attenuated, and remained immunogenic in piglets. For the first time, PEDV E was verified as an IFN antagonist in the infection context and identified as a virulence factor of PEDV. Our data also suggested that EΔaa23-aa29 mutation can be a good target for the development of live attenuated vaccines for PEDV and also provide new perspectives for the attenuated mechanism of PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Proteínas do Envelope Viral , Animais , Infecções por Coronavirus/veterinária , Interferons , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas Atenuadas/genética , Deleção de Sequência , Proteínas do Envelope Viral/genética
5.
Virol Sin ; 38(5): 813-826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660949

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide. The PRRSV mutation rate is the highest among the RNA viruses. To date, NADC30-like PRRSV and highly pathogenic PRRSV (HP-PRRSV) are the dominant epidemic strains in China; however, commercial vaccines do not always provide sufficient cross-protection, and the reasons for insufficient protection are unclear. This study isolated a wild-type NADC30-like PRRSV, SX-YL1806, from Shaanxi Province. Vaccination challenge experiments in piglets showed that commercial modified live virus (MLV) vaccines provided good protection against HP-PRRSV. However, it could not provide sufficient protection against the novel strain SX-YL1806. To explore the reasons for this phenomenon, we compared the genomic homology between the MLV strain and HP-PRRSV or NADC30-like PRRSV and found that the MLV strain had a lower genome similarity with NADC30-like PRRSV. Serum neutralization assay showed that MLV-immune serum slightly promoted the homologous HP-PRRSV replication and significantly promoted the heterologous NADC30-like PRRSV strain replication in vitro, suggesting that antibody-dependent enhancement (ADE) might also play a role in decreasing MLV protective efficacy. These findings expand our understanding of the potential factors affecting the protective effect of PRRSV MLV vaccines against the NADC30-like strains.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Anticorpos Facilitadores , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Genoma Viral , Vacinas Atenuadas/genética , Genômica , Vacinas Virais/genética
6.
J Virol ; 97(5): e0029223, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37133374

RESUMO

Chemokine production by epithelial cells is crucial for neutrophil recruitment to sites of inflammation during viral infection. However, the effect of chemokine on epithelia and how chemokine is involved in coronavirus infection remains to be fully understood. Here, we identified an inducible chemokine interleukin-8 (CXCL8/IL-8), which could promote coronavirus porcine epidemic diarrhea virus (PEDV) infection in African green monkey kidney epithelial cells (Vero) and Lilly Laboratories cell-porcine kidney 1 epithelial cells (LLC-PK1). IL-8 deletion restrained cytosolic calcium (Ca2+), whereas IL-8 stimulation improved cytosolic Ca2+. The consumption of Ca2+ restricted PEDV infection. PEDV internalization and budding were obvious reductions when cytosolic Ca2+ was abolished in the presence of Ca2+ chelators. Further study revealed that the upregulated cytosolic Ca2+ redistributes intracellular Ca2+. Finally, we identified that G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-store-operated Ca2+ (SOC) signaling was crucial for enhancive cytosolic Ca2+ and PEDV infection. To our knowledge, this study is the first to uncover the function of chemokine IL-8 during coronavirus PEDV infection in epithelia. PEDV induces IL-8 expression to elevate cytosolic Ca2+, promoting its infection. Our findings reveal a novel role of IL-8 in PEDV infection and suggest that targeting IL-8 could be a new approach to controlling PEDV infection. IMPORTANCE Coronavirus porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that caused severe economic losses worldwide, and more effort is needed to develop economical and efficient vaccines to control or eliminate this disease. The chemokine interleukin-8 (CXCL8/IL-8) is indispensable for the activation and trafficking of inflammatory mediators and tumor progression and metastasis. This study evaluated the effect of IL-8 on PEDV infection in epithelia. We found that IL-8 expression improved cytosolic Ca2+ in epithelia, facilitating PEDV rapid internalization and egress. G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-SOC signaling was activated by IL-8, releasing the intracellular Ca2+ stores from endoplasmic reticulum (ER). These findings provide a better understanding of the role of IL-8 in PEDV-induced immune responses, which will help develop small-molecule drugs for coronavirus cure.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Quimiocinas , Chlorocebus aethiops , Interleucina-8 , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Células Vero , Replicação Viral
7.
BMC Cancer ; 23(1): 102, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717836

RESUMO

BACKGROUND: CD276 (also known as B7-H3) is one of the most important immune checkpoints of the CD28 and B7 superfamily, and its abnormal expression is closely associated with various types of cancer. It has been shown that CD276 is able to inhibit the function of T cells, and that this gene may potentially be a promising immunotherapy target for different types of cancer. METHODS: Since few systematic studies have been published on the role of CD276 in cancer to date, the present study has employed single-cell sequencing and bioinformatics methods to analyze the expression patterns, clinical significance, prognostic value, epigenetic alterations, DNA methylation level, tumor immune cell infiltration and immune functions of CD276 in different types of cancer. In order to analyze the potential underlying mechanism of CD276 in glioblastoma (GBM) to assess its prognostic value, the LinkedOmics database was used to explore the biological function and co-expression pattern of CD276 in GBM, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. In addition, a simple validation of the above analyses was performed using reverse transcription-quantitative (RT-q)PCR assay. RESULTS: The results revealed that CD276 was highly expressed, and was often associated with poorer survival and prognosis, in the majority of different types of cancer. In addition, CD276 expression was found to be closely associated with T cell infiltration, immune checkpoint genes and immunoregulatory interactions between lymphoid and a non-lymphoid cell. It was also shown that the CD276 expression network exerts a wide influence on the immune activation of GBM. The expression of CD276 was found to be positively correlated with neutrophil-mediated immunity, although it was negatively correlated with the level of neurotransmitters, neurotransmitter transport and the regulation of neuropeptide signaling pathways in GBM. It is noteworthy that CD276 expression was found to be significantly higher in GBM compared with normal controls according to the RT-qPCR analysis, and the co-expression network, biological function and chemotherapeutic drug sensitivity of CD276 in GBM were further explored. In conclusion, the findings of the present study have revealed that CD276 is strongly expressed and associated with poor prognosis in most types of cancer, including GBM, and its expression is strongly associated with T-cell infiltration, immune checkpoint genes, and immunomodulatory interactions between lymphocytes and non-lymphoid cells. CONCLUSIONS: Taken together, based on our systematic analysis, our findings have revealed important roles for CD276 in different types of cancers, especially GBM, and CD276 may potentially serve as a biomarker for cancer.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Prognóstico , Multiômica , Genes Reguladores , Fatores de Transcrição , Antígenos B7/genética
8.
Front Oncol ; 12: 896433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646697

RESUMO

Metabolic reprogramming is a hallmark of glioma, and sterol O-acyltransferase 1 (SOAT1) is an essential target for metabolic therapy. However, the prognostic value of SOAT1 and its association with immune infiltration has not been fully elucidated. Using RNA-seq and clinical data of glioma patients from The Cancer Genome Atlas (TCGA), SOAT1 was found to be correlated with poor prognosis in glioma and the advanced malignancy of clinicopathological characteristics. Next, the correlation between SOAT1 expression and tumor-infiltrating immune cells was performed using the single-sample GSEA algorithm, gene expression profiling interactive analysis (GEPIA), and tumor immune estimation resource version 2 (TIMER2.0); it was found that SOAT1 expression was positively correlated with multiple tumor-infiltrating immune cells. To further verify these results, immunofluorescence was conducted on paraffin-embedded glioma specimens, and a positive trend of the correlation between SOAT1 expression and Treg infiltration was observed in this cohort. Finally, differentially expressed gene analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to explore the biological processes and signaling pathways that SOAT1 may be involved in during glioma pathogenesis. A protein-protein interaction network was established, and co-expression analysis was conducted to investigate the regulatory mechanism of SOAT1 in glioma. To the best of our knowledge, this is the first comprehensive study reporting that SOAT1 may serve as a novel prognostic biomarker associated with immune infiltrates, providing a novel perspective for glioma metabolic therapy.

9.
Front Oncol ; 12: 881801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600392

RESUMO

The suppressor of cytokine signaling (SOCS) family contains eight members, including SOCS1-7 and CIS, and SOCS3 has been shown to inhibit cytokine signal transduction in various signaling pathways. Although several studies have currently shown the correlations between SOCS3 and several types of cancer, no pan-cancer analysis is available to date. We used various computational tools to explore the expression and pathogenic roles of SOCS3 in several types of cancer, assessing its potential role in the pathogenesis of cancer, in tumor immune infiltration, tumor progression, immune evasion, therapeutic response, and prognostic. The results showed that SOCS3 was downregulated in most The Cancer Genome Atlas (TCGA) cancer datasets but was highly expressed in brain tumors, breast cancer, esophageal cancer, colorectal cancer, and lymphoma. High SOCS3 expression in glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG) were verified through immunohistochemical experiments. GEPIA and Kaplan-Meier Plotter were used, and this bioinformatics analysis showed that high SOCS3 expression was associated with a poor prognosis in the majority of cancers, including LGG and GBM. Our analysis also indicated that SOCS3 may be involved in tumor immune evasion via immune cell infiltration or T-cell exclusion across different types of cancer. In addition, SOCS3 methylation was negatively correlated with mRNA expression levels, worse prognoses, and dysfunctional T-cell phenotypes in various types of cancer. Next, different analytical methods were used to select genes related to SOCS3 gene alterations and carcinogenic characteristics, such as STAT3, SNAI1, NFKBIA, BCL10, TK1, PGS1, BIRC5, TMC8, and AFMID, and several biological functions were identified between them. We found that SOCS3 was involved in cancer development primarily through the JAK/STAT signaling pathway and cytokine receptor activity. Furthermore, SOCS3 expression levels were associated with immunotherapy or chemotherapy for numerous types of cancer. In conclusion, this study showed that SOCS3 is an immune-oncogenic molecule that may possess value as a biomarker for diagnosis, treatment, and prognosis of several types of cancer in the future.

10.
J Cancer ; 13(6): 1745-1757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399707

RESUMO

Glioblastoma (GBM) is the most lethal malignant tumor in the central nervous system, with a median survival of only 14 months. Cholesterol, which is the main component of cell membrane and the precursor of many hormones, is one of the most important lipid components in human body. Since reprogramming of the cholesterol metabolic profile has been discovered in many cancers including GBM, cholesterol metabolism becomes a promising potential target for therapy. Since GBM cells rely on external cholesterol to survive and accumulate lipid droplets to meet their rapid growth needs, targeting the metabolism of cholesterol by different strategies including inhibition of cholesterol uptake and promotion of cholesterol efflux by activating LXRs and disruption of cellular cholesterol trafficking, inhibition of SREBP signaling, inhibition of cholesterol esterification, could potentially oppose the growth of glial tumors. In this review, we discussed the above findings and describe cholesterol synthesis and homeostatic feedback pathways in normal brain tissues and brain tumors, statin use in GBM and the role of lipid rafts and cholesterol precursors and oxysterols in the treatment and pathogenesis of GBM are also summarized.

11.
J Virol ; 96(3): e0186321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34851144

RESUMO

Type I interferons (IFN-Is) play a key role in host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating IFN-I production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-ß) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that a deficiency of HOXA3 promoted the HO-1-IRF3 interaction and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, causes significant worldwide economic losses in the pork industry. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found that a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 and provides new insights into the PRRSV immune evasion mechanism.


Assuntos
Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Proteínas de Homeodomínio/genética , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Sítios de Ligação , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Patógeno/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ligação Proteica , Transporte Proteico , Suínos , Fatores de Transcrição/metabolismo , Replicação Viral
12.
Quant Imaging Med Surg ; 11(3): 939-947, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654667

RESUMO

BACKGROUND: Ischemic cerebral edema (CE) is a major leading cause of death in patients with ischemic stroke. The CE progression is closely related to the local cerebral blood perfusion (LCBP) level surrounding the edema area. Quantitative studying the interaction between the CE and peripheral LCBP may provide new inspiration for control and even treatment of CE. METHODS: Photothrombosis ischemia mouse model was established and observed for 9 hours using swept-source optical coherence tomography (SS-OCT). OCT-based angiography and OCT-based attenuation imaging techniques were used to reconstruct the angiograms reflecting the cerebral blood perfusion (CBP) level and optical attenuation coefficient (OAC) maps reflecting the edema state. The influence of edema on LCBP was analyzed by quantifying the blood perfusion in different spatial locations around the edema tissue, and the influence of LCBP on CE progression was revealed by comparing the changes of the edema area and LCBP level over time. RESULTS: Preliminary studies show that the effect of edema tissue on LCBP is very significant, which shows a clear spatial dependence. LCBP near the edema tissue is 15-20% lower than that far away from the edema tissue. When the LCBP drops to around 60% of the initial value, the edema area increases sharply. In addition, the level of CBP in the contralateral hemisphere also decreases with time. When the contralateral CBP drops to around 60%, there is a certain probability that contralateral edema will occur. CONCLUSIONS: CE progression is not only related to the LCBP around the edema tissue but also related to the CBP of non-edematous regions. Controlling the CBP level of non-edematous regions may play a positive role in the treatment of CE. This work provides a new method and inspiration for exploring the mechanism of ischemic CE progression.

13.
J Nanobiotechnology ; 17(1): 96, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526383

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), which is characterized by severe watery diarrhea, vomiting, dehydration and a high mortality rate in piglets, leads to enormous economic losses to the pork industry and remains a large challenge worldwide. Thus, a rapid and reliable method is required for epidemiological investigations and to evaluate the effect of immunization. However, the current diagnostic methods for PEDV are time-consuming and very expensive and rarely meet the requirements for clinical application. Nanobodies have been used in the clinic to overcome these problems because of the advantages of their easy expression and high level of stability. In the present work, a novel biotinylated nanobody-based blocking ELISA (bELISA) was developed to detect anti-PEDV antibodies in clinical pig serum. RESULTS: Using phage display technology and periplasmic extraction ELISA (PE-ELISA), anti-PEDV N protein nanobodies from three strains of PEDV were successfully isolated after three consecutive rounds of bio-panning from a high quality phage display VHH library. Then, purified Nb2-Avi-tag fusion protein was biotinylated in vitro. A novel bELISA was subsequently developed for the first time with biotinylated Nb2. The cutoff value for bELISA was 29.27%. One hundred and fifty clinical serum samples were tested by both newly developed bELISA and commercial kits. The sensitivity and specificity of bELISA were 100% and 93.18%, respectively, and the coincidence rate between the two methods was 94%. CONCLUSIONS: In brief, bELISA is a rapid, low-cost, reliable and useful nanobody-based tool for the serological evaluation of current PEDV vaccines efficacy and indirect diagnosis of PEDV infection.


Assuntos
Infecções por Coronavirus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Diarreia Epidêmica Suína/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Animais , Anticorpos Antivirais/imunologia , Biotinilação/métodos , Camelus/virologia , Imunização/métodos , Masculino , Sensibilidade e Especificidade , Suínos/virologia
14.
PLoS One ; 14(5): e0217349, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141561

RESUMO

With the prosperity of machine learning and cloud computing, meaningful information can be mined from mass electronic medical data which help physicians make proper disease diagnosis for patients. However, using medical data and disease information of patients frequently raise privacy concerns. In this paper, based on single-layer perceptron, we propose a scheme of privacy-preserving clinical decision with cloud support (PPCD), which securely conducts disease model training and prediction for the patient. Each party learns nothing about the other's private information. In PPCD, a lightweight secure multiplication is presented and introduced to improve the model training. Security analysis and experimental results on real data confirm the high accuracy of disease prediction achieved by the proposed PPCD without the risk of privacy disclosure.


Assuntos
Confidencialidade/ética , Tomada de Decisões Assistida por Computador , Algoritmos , Computação em Nuvem , Segurança Computacional/tendências , Confidencialidade/normas , Tomada de Decisões , Revelação , Registros Eletrônicos de Saúde , Humanos , Aprendizado de Máquina , Prontuários Médicos , Privacidade
15.
Environ Sci Pollut Res Int ; 25(5): 4690-4706, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197059

RESUMO

The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by placing wells at locations with higher rock stiffness. Compared with the reference case with coal burning for heating purposes, the yearly emission reduction capacity can reach 1 × 107 kg by switching to the direct utilization of geothermal energy in Daming field.


Assuntos
Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Energia Geotérmica , Modelos Teóricos , Poços de Água , China , Calefação , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA