Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Sci ; 39(2): 243-249, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31016517

RESUMO

EN: Summary]This study aimed to test the effects of five single nucleotide polymorphisms within SLC2A9 on uric acid level in a special ethnic population, the Uygurs in Xinjiang, China. According to our inclusion and exclusion criteria, Uygur adults from Xinjiang constituted the study population. There were 1053 Uygur adults with hyperuricemia and 1373 normal Uygur adults who served as controls. Five single nucleotide polymorphisms within SLC2A9 (rs938557, rs7679916, rs7349721, rs13101785, and rs13137343) were selected with the HapMap dataset and TaqMan assays. We found that, in normouricemia group, rs938557 was significantly correlated with uric acid (ß=11.39±3.74, P=0.0024) adjusting for age, gender and BMI; rs7679916 and rs13137343 were marginally associated with uric acid concentration (ß=5.77±3.09, P=0.0626; ß= 5.99±3.08, P=0.0520). In the hyperuricemia group, no SNP was found to possibly influence uric acid concentration. None of these SNPs showed significant association with hyperuricemia after controlling for age, gender and BMI. There were significant or marginal correlations between certain single nucleotide polymorphisms in the SLC2A9 region and uric acid concentration in Uygur normouricemia samples. In turn, some of these single nucleotide polymorphisms in SLC2A9 may increase the risk of hyperuricemia.


Assuntos
Predisposição Genética para Doença/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Hiperuricemia/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Povo Asiático/genética , China , Estudos Transversais , Feminino , Frequência do Gene/genética , Humanos , Hiperuricemia/metabolismo , Masculino , Pessoa de Meia-Idade , Ácido Úrico/metabolismo
2.
Insect Sci ; 25(5): 765-777, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28459128

RESUMO

Niemann-Pick type C2 (NPC2) is a type of small soluble protein involved in lipid metabolism and triglyceride accumulation in vertebrates and arthropods. Recent studies have determined that NPC2 also participates in chemical communication of arthropods. In this work, two novel NPC2 proteins (MmedNPC2a and MmedNPC2b) in Microplitis mediator were identified. Real-time quantitative PCR (qPCR) analysis revealed that MmedNPC2a was expressed higher in the antennae than in other tissues of adult wasps compared with MmedNPC2b. Subsequent immunolocalization results demonstrated that NPC2a was located in the lymph cavities of sensilla placodea. To further explore the binding characterization of recombinant MmedNPC2a to 54 candidate odor molecules, a fluorescence binding assay was performed. It was found MmedNPC2a could not bind with selected fatty acids, such as linoleic acid, palmitic acid, stearic acid and octadecenoic acid. However, seven cotton volatiles, 4-ethylbenzaldehyde, 3,4-dimethylbenzaldehyde, ß-ionone, linalool, m-xylene, benzaldehyde and trans-2-hexen-1-al showed certain binding abilities with MmedNPC2a. Moreover, the predicted 3D model of MmedNPC2a was composed of seven ß-sheets and three pairs of disulfide bridges. In this model, the key binding residues for oleic acid in CjapNPC2 of Camponotus japonicus, Lue68, Lys69, Lys70, Phe97, Thr103 and Phe127, are replaced with Phe85, Ser86, His87, Leu113, Tyr119 and Ile143 in MmedNPC2a, respectively. We proposed that MmedNPC2a in M. mediator may play roles in perception of plant volatiles.


Assuntos
Proteínas de Insetos/genética , Receptores Odorantes/genética , Sensilas/metabolismo , Vespas/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Filogenia , Receptores Odorantes/metabolismo , Alinhamento de Sequência , Vespas/metabolismo
3.
Plant Cell Environ ; 41(1): 261-274, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29044662

RESUMO

Herbivore-induced terpenes have been reported to function as ecological signals in plant-insect interactions. Here, we showed that insect-induced cotton volatile blends contained 16 terpenoid compounds with a relatively high level of linalool. The high diversity of terpene production is derived from a large terpene synthase (TPS) gene family. The TPS gene family of Gossypium hirsutum and Gossypium raimondii consist of 46 and 41 members, respectively. Twelve TPS genes (GhTPS4-15) could be isolated, and protein expression in Escherichia coli revealed catalytic activity for eight GhTPS. The upregulation of the majority of these eight genes additionally supports the function of these genes in herbivore-induced volatile biosynthesis. Furthermore, transgenic Nicotiana tabacum plants overexpressing GhTPS12 were generated, which produced relatively large amounts of (3S)-linalool. In choice tests, female adults of Helicoverpa armigera laid fewer eggs on transgenic plants compared with non-transformed controls. Meanwhile, Myzus persicae preferred feeding on wild-type leaves over leaves of transgenic plants. Our findings demonstrate that transcript accumulation of multiple TPS genes is mainly responsible for the production and diversity of herbivore-induced volatile terpenes in cotton. Also, these genes might play roles in plant defence, in particular, direct defence responses against herbivores.


Assuntos
Alquil e Aril Transferases/genética , Gossypium/genética , Gossypium/imunologia , Herbivoria/fisiologia , Hidroliases/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Monoterpenos Acíclicos , Alquil e Aril Transferases/metabolismo , Animais , Afídeos , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Gossypium/enzimologia , Gossypium/parasitologia , Larva , Monoterpenos/metabolismo , Mariposas/fisiologia , Filogenia , Plantas Geneticamente Modificadas , Nicotiana/genética , Compostos Orgânicos Voláteis/metabolismo
4.
Sci Rep ; 7(1): 16859, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203785

RESUMO

Pheromone binding proteins (PBPs) are widely distributed in insect antennae, and play important roles in the perception of sex pheromones. However, the detail mechanism of interaction between PBPs and odorants remains in a black box. Here, a predicted 3D structure of PBP1 of the serious agricultural pest, Helicoverpa armigera (HarmPBP1) was constructed, and the key residues that contribute to binding with the major sex pheromone components of this pest, (Z)-11- hexadecenal (Z11-16:Ald) and (Z)-9- hexadecenal (Z9-16:Ald), were predicted by molecular docking. The results of molecular simulation suggest that hydrophobic interactions are the main linkage between HarmPBP1 and the two aldehydes, and four residues in the binding pocket (Phe12, Phe36, Trp37, and Phe119) may participate in binding with these two ligands. Then site-directed mutagenesis and fluorescence binding assays were performed, and significant decrease of the binding ability to both Z11-16:Ald and Z9-16:Ald was observed in three mutants of HarmPBP1 (F12A, W37A, and F119A). These results revealed that Phe12, Trp37, and Phe119 are the key residues of HarmPBP1 in binding with the Z11-16:Ald and Z9-16:Ald. This study provides new insights into the interactions between pheromone and PBP, and may serve as a foundation for better understanding of the pheromone recognition in moths.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Atrativos Sexuais/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Insetos/química , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Atrativos Sexuais/química
5.
Sci Rep ; 7(1): 13989, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070808

RESUMO

Parasitoids are important natural enemies of aphids in wheat fields of northern China, and interest in them has increased in recent years. However, little is known regarding parasitoids of wheat aphids, which has hindered the study and understanding of aphid-parasitoid interactions. In the present study, three primary parasitoids and 15 hyperparasitoids were collected in wheat fields during a 2-year survey in northern China (2014, 2015) and a 2-year investigation at Langfang, Hebei Province (2015, 2016). Among them, Aphidius uzbekistanicus Luzhetski was found most frequently among the primary parasitoids, while Pachyneuron aphidis (Bouché) dominated the hyperparasitoid community. Investigation of the dynamics of wheat aphids and parasitoids revealed that the primary parasitoids appeared early in the growing period and that the hyperparasitoids appeared later. Analysis of the seasonal dynamics revealed that growth of the parasitoid population followed that of the aphid population and that the parasitism rates were highest in the late growing period.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Triticum/parasitologia , Animais , Biodiversidade , China , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie , Triticum/crescimento & desenvolvimento
6.
Sci Rep ; 7(1): 9799, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852186

RESUMO

The cotton aphid, Aphis gossypii (Hemiptera: Aphididae), is a serious pest of cotton across the globe, particularly in the cotton agroecosystems of northern China. Parasitic wasps are deemed to be important natural enemies of A. gossypii, but limited information exists about their species composition, richness and seasonal dynamics in northern China. In this study, we combine sampling over a broad geographical area with intensive field trials over the course of three cropping seasons to describe parasitoid-hyperparasitoid communities in cotton crops. We delineate a speciose complex of primary parasitoids and hyperparasitoids associated with A. gossypii. Over 90% of the primary parasitoids were Binodoxys communis. Syrphophagus sp. and Pachyneuron aphidis made up most of the hyperparasitoids. Parasitism rates changed in a similar way following the fluctuation of the aphid population. Early in the growing period, there were more hyperparasitoids, while later, the primary parasitoids provided control of A. gossypii. The first systematic report of this cotton aphid parasitoid complex and their population dynamics in association with their hosts presented a comprehensive assessment of cotton parasitoid species and provided important information for the establishment and promotion of their biological control of cotton aphids.


Assuntos
Afídeos/classificação , Biodiversidade , Gossypium/parasitologia , Vespas/classificação , Animais , China , Doenças das Plantas/parasitologia , Dinâmica Populacional , Estações do Ano
7.
PLoS One ; 12(7): e0180775, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732030

RESUMO

Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play important roles in transporting semiochemicals through the sensillar lymph to olfactory receptors in insect antennae. In the present study, twenty OBPs and three CSPs were identified from the antennal transcriptome of Microplitis mediator. Ten OBPs (MmedOBP11-20) and two CSPs (MmedCSP2-3) were newly identified. The expression patterns of these new genes in olfactory and non-olfactory tissues were investigated by real-time quantitative PCR (qPCR) measurement. The results indicated that MmedOBP14, MmedOBP18, MmedCSP2 and MmedCSP3 were primarily expressed in antennae suggesting potential olfactory roles in M. mediator. However, other genes including MmedOBP11-13, 15-17, 19-20 appeared to be expressed at higher levels in body parts than in antennae. Focusing on the functional characterization of MmedCSP3, immunocytochemistry and fluorescent competitive binding assays were conducted indoors. It was found that MmedCSP3 was specifically located in the sensillum lymph of olfactory sensilla basiconca type 2. The recombinant MmedCSP3 could bind several types of host insects odors and plant volatiles. Interestingly, three sex pheromone components of Noctuidae insects, cis-11-hexadecenyl aldehyde (Z11-16: Ald), cis-11-hexadecanol (Z11-16: OH), and trans-11-tetradecenyl acetate (E11-14: Ac), showed high binding affinities (Ki = 17.24-18.77 µM). The MmedCSP3 may be involved in locating host insects. Our data provide a base for further investigating the physiological roles of OBPs and CSPs in M. mediator, and extend the function of MmedCSP3 in chemoreception of M. mediator.


Assuntos
Himenópteros/metabolismo , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/metabolismo , Western Blotting , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Himenópteros/citologia , Imuno-Histoquímica , Masculino , Filogenia , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transcriptoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-28321909

RESUMO

Insects rely heavily on their sophisticated chemosensory systems to locate host plants and find conspecific mates. Although the molecular mechanisms of odorant recognition in many Lepidoptera species have been well explored, limited information has been reported on the geometrid moth Ectropis obliqua Prout, an economically important pest of tea plants. In the current study, we first attempted to identify and characterize the putative olfactory carrier proteins, including odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). By analyzing previously obtained transcriptomic data of third-instar larvae, five OBPs and 14 CSPs in E. obliqua were identified. Sequence alignment, conserved motif identification, and phylogenetic analysis suggested that candidate proteins have typical characteristics of the insect OBP or CSP family. The expression patterns regarding life stages and different tissues were determined by quantitative real-time PCR. The results revealed that four transcripts (OBP2, OBP4 and CSP8, CSP10) had larvae preferential expression profiles and nine candidate genes (PBP1, OBP1 and CSP2, CSP4, CSP5, CSP6, CSP7, CSP11, and CSP13) were adult-biased expressed. Further specific tissue expression profile evaluation showed that OBP1, OBP2, OBP4, and PBP1 were highly expressed at olfactory organs, implying their potential involvement in chemical cue detection, whereas CSPs were ubiquitously detected among all of the tested tissues and could be associated with multiple physiological functions. This study provided a foundation for understanding the physiological functions of OBPs and CSPs in E. obliqua and will help pave the way for the development of a new environmental friendly pest management strategy against the tea geometrid moth.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Receptores Odorantes/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Insetos/química , Larva , Masculino , Filogenia , Receptores Odorantes/química , Alinhamento de Sequência , Olfato , Transcriptoma
9.
J Chem Ecol ; 43(2): 207-214, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28070757

RESUMO

Pheromone binding proteins (PBPs) are thought to play key roles in insect sex pheromone recognition; however, there is little in vivo evidence to support this viewpoint in comparison to abundant biochemical data in vitro. In the present study, two noctuid PBP genes HarmPBP1 and HarmPBP2 of the serious agricultural pest, Helicoverpa armigera were selected to be knocked down by RNA interference, and then the changes in electrophysiological and behavioral responses of male mutants to their major sex pheromone component (Z)-11-hexadecenal (Z11-16:Ald) were recorded. There were no significant electrophysiological or behavioral changes of tested male moths in response to Z11-16:Ald when either single PBP gene was knocked down. However, decreased sensitivity of male moths in response to Z11-16:Ald was observed when both HarmPBP1 and HarmPBP2 genes were silenced. These results reveal that both HarmPBP1 and HarmPBP2 are required for the recognition of the main sex pheromone component Z11-16:Ald in H. armigera. Furthermore, these findings may help clarify physiological roles of moth PBPs in the sex pheromone recognition pathway, which in turn could facilitate pest control by exploring sex pheromone blocking agents.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Insetos/metabolismo , Cetonas/farmacologia , Mariposas , Interferência de RNA , Atrativos Sexuais/metabolismo , Animais , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Técnicas de Silenciamento de Genes , Controle de Insetos , Proteínas de Insetos/genética , Cetonas/metabolismo , Masculino , Mariposas/genética , Mariposas/metabolismo , Mariposas/fisiologia , Ligação Proteica , Atrativos Sexuais/genética , Comportamento Sexual Animal/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-27085212

RESUMO

Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) is an insect pest that causes severe agricultural damage to cotton and many other important crops. In insects, olfaction is very important throughout their lifetime. There are two groups of small soluble proteins, named odorant binding proteins (OBPs) and chemosensory proteins (CSPs), which are suggested to participate in the initial biochemical recognition steps of insect olfactory signal transduction. In this study, a total of 16 OBPs (12 classical OBPs and 4 plus-C OBPs) and 8 CSPs, were identified in the antennal transcriptome of A. suturalis. The sex- and tissue-specific profiles of these binding protein genes showed that 13 of the 16 OBP transcripts were highly expressed in the antennae of both sexes, and 4 OBPs (AsutOBP1, 4, 5 and 9) were expressed higher in the male antennae compared to the female antennae. Three CSPs (AsutCSP1, 4 and 5) were expressed specifically in the antennae of both sexes, and AsutCSP1 was expressed higher in the male antennae than in the female antennae. Our findings identify several novel OBP and CSP genes for further investigation of the olfactory system of A. suturalis at the molecular level.


Assuntos
Antenas de Artrópodes/metabolismo , Hemípteros/genética , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética , Animais , Antenas de Artrópodes/química , Feminino , Perfilação da Expressão Gênica , Hemípteros/metabolismo , Hemípteros/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/análise , Receptores Odorantes/genética
11.
Insect Sci ; 24(5): 789-797, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27265520

RESUMO

Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. Here, we injected AlinOBP4-siRNA into the conjunctivum between prothorax and mesothorax of the lucerne plant bug, Adelphocoris lineolatus and evaluated the silencing of AlinOBP4 by reverse transcription polymerase chain reaction (RT-PCR) analysis, quantitative real-time PCR (qPCR) test and electroantennogram (EAG) assay. The combination of RT-PCR and qPCR analyses revealed that the levels of messenger RNA transcript were significantly reduced ∼95% in AlinOBP4-siRNA-treated A. lineolatus males and ∼75% in RNAi-treated females within 48 hours. It was found that there are different EAG responses between male and female bugs when the AlinOBP4 gene was silenced by RNAi. The EAGs of A. lineolatus to two plant volatiles, tridecanal and hexyl alcohol, were reduced 9.09% and 79.45% in RNAi-treated males, 62.08% and 62.08% in RNAi-treated females compared to the controls, separately. Antennae of RNAi-treated bugs showed significantly lower electrophysiological responses to four sex pheromone analogs, butyl butanoate, 1-hexyl butyrate, (E)-2-hexenyl butyrate and hexyl hexanoate. The EAG recordings were reduced 35.43%, 35.24%, 39.96% and 78.47% in RNAi-treated males and 64.52%, 18.13%, 36.88% and 49.52% in RNAi-treated females, respectively. The results suggested that AlinOBP4 might play dual-roles in the identification of plant volatiles and sex pheromones. It was suspected that AlinOBP4 may have different functions in odor perception between male and female A. lineolatus.


Assuntos
Hemípteros/fisiologia , Feromônios/fisiologia , Receptores Odorantes/fisiologia , Sensilas/fisiologia , Animais , Feminino , Masculino , Interferência de RNA
12.
Sci Rep ; 6: 37870, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892490

RESUMO

Olfactory receptors are believed to play a central role in insects host-seeking, mating, and ovipositing. On the basis of male and female antennal transcriptome of adult Apolygus lucorum, a total of 110 candidate A. lucorum odorant receptors (AlucOR) were identified in this study including five previously annotated AlucORs. All the sequences were validated by cloning and sequencing. Tissue expression profiles analysis by RT-PCR indicated most AlucORs were antennal highly expressed genes. The qPCR measurements further revealed 40 AlucORs were significantly higher in the antennae. One AlucOR was primarily expressed in the female antennae, while nine AlucORs exhibited male-biased expression patterns. Additionally, both the RPKM value and RT-qPCR analysis showed AlucOR83 and AlucOR21 were much higher abundant in male antennae than in female antennae, suggesting their different roles in chemoreception of gender. Phylogenetic analysis of ORs from several Hemipteran species demonstrated that most AlucORs had orthologous genes, and five AlucOR-specific clades were defined. In addition, a sub-clade of potential male-based sex pheromone receptors were also identified in the phylogenetic tree of AlucORs. Our results will facilitate the functional studies of AlucORs, and thereby provide a foundation for novel pest management approaches based on these genes.


Assuntos
Antenas de Artrópodes/fisiologia , Heterópteros/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
13.
Front Physiol ; 7: 201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313540

RESUMO

Odorant binding proteins (OBPs) are proposed to be directly required for odorant discrimination and represent potential interesting targets for pest control. In the notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings of the current study by characterizing of AlinOBP11 rather indicated that OBP in hemipterous plant bugs might fulfill a different and tantalizing physiological role. The phylogenetic analysis uncovered that AlinOBP11 together with several homologous bug OBP proteins are potential orthologs, implying they could exhibit a conserved function. Next, the results of expression profiles solidly showed that AlinOBP11 was predominantly expressed at adult mouthparts, the most important gustatory organ of Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed much stronger binding abilities to non-volatile secondary metabolite compounds than the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins across bug species, could be associated with a distinctively conserved physiological role such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system.

14.
J Insect Physiol ; 90: 27-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208597

RESUMO

Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception.


Assuntos
Proteínas de Insetos/genética , Receptores Ionotrópicos de Glutamato/genética , Transcriptoma , Vespas/genética , Animais , Antenas de Artrópodes/metabolismo , Clonagem Molecular , Feminino , Proteínas de Insetos/metabolismo , Masculino , Mariposas/parasitologia , Neurônios Receptores Olfatórios/metabolismo , Reação em Cadeia da Polimerase , Receptores Ionotrópicos de Glutamato/metabolismo , Análise de Sequência de DNA , Vespas/fisiologia
15.
PLoS One ; 10(10): e0140562, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26466366

RESUMO

Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most important agricultural pests, with broad host range and cryptic feeding habits in China. Chemosensory behavior plays an important role in many crucial stages in the life of A. lucorum, such as the detection of sex pheromone cues during mate pursuit and fragrant odorants during flowering host plant localization. Odorant-binding proteins (OBPs) are involved in the initial biochemical recognition steps in semiochemical perception. In the present study, a transcriptomics-based approach was used to identify potential OBPs in A. lucorum. In total, 38 putative OBP genes were identified, corresponding to 26 'classic' OBPs and 12 'Plus-C' OBPs. Phylogenetic analysis revealed that A. lucorum OBP proteins are more closely related to the OBP proteins of other mirid bugs as the same family OBP clustering together. Quantitative real-time PCR analysis for the first reported 23 AlucOBPs revealed that the expression level of 11 AlucOBP genes were significantly higher in antennae of both sexes than in other tissues. Three of them were male antennae-biased and six were female antennae-biased, suggesting their putative roles in the detection of female sex pheromones and host plant volatiles. In addition, three, four, two and one AlucOBPs had the highest degree of enrichment in the stylet, head, leg, and in abdomen tissues, respectively. Two other OBPs were ubiquitously expressed in the main tissues, including antennae, stylets, heads, legs and wings. Most orthologs had similar expression patterns, strongly indicating that these genes have the same function in olfaction and gustation.


Assuntos
Perfilação da Expressão Gênica , Heterópteros/genética , Receptores Odorantes/genética , Sequência de Aminoácidos , Animais , Feminino , Regulação da Expressão Gênica , Heterópteros/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Dados de Sequência Molecular , Filogenia , Receptores Odorantes/química , Alinhamento de Sequência , Transcriptoma
16.
Sci Rep ; 5: 13800, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346731

RESUMO

Insect odorant binding proteins (OBPs) are thought to involve in insects' olfaction perception. In the present study, we identified 38 OBP genes from the antennal transcriptomes of Spodoptera litura. Tissue expression profiles analysis revealed that 17 of the 38 SlitOBP transcripts were uniquely or primarily expressed in the antennae of both sexes, suggesting their putative role in chemoreception. The RPKM value analysis revealed that seven OBPs (SlitPBP1-3, SlitGOBP1-2, SlitOBP3 and SlitOBP5) are highly abundant in male and female antennae. Most S. litura antennal unigenes had high homology with Lepidoptera insects, especially genes of the genus Spodoptera. Phylogenetic analysis of the Lepidoptera OBPs demonstrated that the OBP genes from the genus Spodoptera (S. litura, Spodoptera littoralis and Spodoptera exigua) had a relatively close evolutionary relationship. Some regular patterns and key conserved motifs of OBPs in genus Spodoptera are identified by MEME, and their putative roles in detecting odorants are discussed here. The motif-patterns between Lepidoptera OBPs and CSPs are also compared. The SlitOBPs identified here provide a starting point to facilitate functional studies of insect OBPs at the molecular level both in vivo and in vitro.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Nicotiana , Receptores Odorantes/genética , Spodoptera/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Feminino , Regulação da Expressão Gênica , Proteínas de Insetos/química , Masculino , Anotação de Sequência Molecular , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Matrizes de Pontuação de Posição Específica , Receptores Odorantes/química , Alinhamento de Sequência , Spodoptera/classificação , Nicotiana/parasitologia , Transcriptoma
17.
Sci Rep ; 5: 11867, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148847

RESUMO

In response to insect herbivory, plants emit elevated levels of volatile organic compounds for direct and indirect resistance. However, little is known about the molecular and genomic basis of defense response that insect herbivory trigger in cotton plants and how defense mechanisms are orchestrated in the context of other biological processes. Here we monitored the transcriptome changes and volatile characteristics of cotton plants in response to cotton bollworm (CBW; Helicoverpa armigera) larvae infestation. Analysis of samples revealed that 1,969 transcripts were differentially expressed (log2|Ratio| ≥ 2; q ≤ 0.05) after CBW infestation. Cluster analysis identified several distinct temporal patterns of transcriptome changes. Among CBW-induced genes, those associated with indirect defense and jasmonic acid pathway were clearly over-represented, indicating that these genes play important roles in CBW-induced defenses. The gas chromatography-mass spectrometry (GC-MS) analyses revealed that CBW infestation could induce cotton plants to release volatile compounds comprised lipoxygenase-derived green leaf volatiles and a number of terpenoid volatiles. Responding to CBW larvae infestation, cotton plants undergo drastic reprogramming of the transcriptome and the volatile profile. The present results increase our knowledge about insect herbivory-induced metabolic and biochemical processes in plants, which may help improve future studies on genes governing processes.


Assuntos
Gossypium/metabolismo , Mariposas/fisiologia , Transcriptoma , Compostos Orgânicos Voláteis/análise , Animais , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Gossypium/química , Herbivoria , Larva/metabolismo , Redes e Vias Metabólicas , Mariposas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Terpenos/análise , Terpenos/química , Terpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
18.
Int J Biol Sci ; 11(7): 737-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078716

RESUMO

Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level.


Assuntos
Antenas de Artrópodes/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/genética , Lepidópteros/parasitologia , Células Receptoras Sensoriais/metabolismo , Transcriptoma/fisiologia , Vespas/genética , Animais , Sequência de Bases , DNA Complementar/genética , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Larva/parasitologia , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transcriptoma/genética
19.
Sci Rep ; 5: 8073, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25627422

RESUMO

Insect chemosensory proteins (CSPs) are a family of small soluble proteins. To date, their physiological functions in insect olfaction remain largely controversial in comparison to odorant binding proteins (OBPs). In present study, we reported the antenna specific expression of three CSPs (AlinCSP4-6) from Adelphocoris lineolatus, their distinct chemosensillum distribution as well as ligand binding capability thus providing the evidence for the possible roles that they could play in semiochemical detection of the plant bug A. lineolatus. The results of qRT-PCR and western blot assay clearly showed that all of these three CSPs are highly expressed in the adult antennae, the olfactory organ of insects. Further cellular investigation of their immunolocalization revealed their dynamic protein expression profiles among different types of antennal sensilla. In a fluorescence competitive binding assay, the selective ligand binding was observed for AlinCSP4-6. In ad`dition, a cooperative interaction was observed between two co-expressed CSPs resulting in an increase of the binding affinities by a mixture of AlinCSP5 and AlinCSP6 to terpenoids which do not bind to individual CSPs. These findings in combination with our previous data for AlinCSP1-3 indicate a possible functional differentiation of CSPs in the A. lineolatus olfactory system.


Assuntos
Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Ligantes , Receptores Odorantes/metabolismo , Sensilas/metabolismo , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/patologia , Clonagem Molecular , Feminino , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Imuno-Histoquímica , Proteínas de Insetos/genética , Masculino , Medicago sativa/parasitologia , Dados de Sequência Molecular , Feromônios/química , Feromônios/metabolismo , Ligação Proteica , Receptores Odorantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
20.
Pest Manag Sci ; 71(7): 937-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25067834

RESUMO

BACKGROUND: Transgenic rice producing the insecticidal protein from Bacillus thuringiensis Berliner (Bt) is protected from damage by lepidopteran insect pests. However, one of the main concerns about Bt rice is the potential impact on non-target herbivores. In the present study, the ecological impacts of two Bt rice lines, T1C-19 expressing Cry1C protein and T2A-1 expressing Cry2A protein, on the non-target herbivore brown planthopper (BPH), Nilaparvata lugens (Stål), were evaluated under laboratory and field conditions. The purpose was to verify whether these Bt rice lines could affect the performance of BPH at individual and population scales. RESULTS: Laboratory results showed that most of the fitness parameters (development duration, survival rate, fecundity, fertility, amount of honeydew excreted) of BPH were not significantly affected by the two tested Bt rice lines, although the development duration of fourth-instar nymphs fed on T1C-19 was distinctly longer compared with that on T2A-1 and non-Bt rice plants. Five life-table parameters did not significantly differ among rice types. Two-year field trials also revealed no significant difference in population dynamics of BPH among rice types. CONCLUSION: It is inferred that the tested Bt rice lines are unlikely to affect the population growth of BPH.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Hemípteros/fisiologia , Proteínas Hemolisinas/genética , Oryza/metabolismo , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Feminino , Hemípteros/crescimento & desenvolvimento , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Oryza/genética , Plantas Geneticamente Modificadas , Dinâmica Populacional , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA