Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732718

RESUMO

A composite structure containing a metallic skeleton and polyurea elastomer interpenetrating phase was fabricated, and its anti-penetration performance for low-velocity large mass fragments was experimentally studied. The protection capacity of three polyurea was compared based on the penetration resistance force measurement. Results show that the polyurea coating layer at the backside improves the performance of the polyurea-filled spherical cell porous aluminum (SCPA) plate due to its backside support effect and phase transition effect, which are accompanied by a large amount of energy absorption. The frontal-side-coated polyurea layer failed to shear and provided a very limited strengthening effect on the penetration resistance of the interpenetrating phase composite panel. The filling polyurea in SCPA increased the damage area and formed a compression cone for the backside coating layer, leading to a significant stress diffusion effect. The anti-penetration performance was synergistically improved by the plug block effect of the interpenetrating phase composite and the backside support effect of the PU coating layer. Compared with SCPA, the initial impact failure strength and the average resistance force of the composite plate were improved by 120-200% and 108-274%, respectively.

2.
Ecol Evol ; 14(1): e10853, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38259957

RESUMO

The invasion of alien plant species threatens the composition and diversity of native communities. However, the invasiveness of alien plants and the resilience of native communities are dependent on the interactions between biotic and abiotic factors, such as natural enemies and nutrient availability. In our study, we simulated the invasion of nine invasive plant species into native plant communities using two levels of nutrient availability and suppression of natural enemies. We evaluated the effect of biotic and abiotic factors on the response of alien target species and the resistance of native communities to invasion. The results showed that the presence of enemies (enemy release) increased the biomass proportion of alien plants while decreasing that of native communities in the absence of nutrient addition. Furthermore, we also found that the negative effect of enemy suppression on the evenness of the native community and the root-to-shoot ratio of alien target species was greatest under nutrient addition. Therefore, nutrient-poor and natural enemies might promote the invasive success of alien species in native communities, whereas nutrient addition and enemy suppression can better enhance the resistance of native plant communities to invasion.

3.
Sci Rep ; 13(1): 15412, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723196

RESUMO

Oceans are crucial to human survival, providing natural resources and most of the global oxygen supply, and are responsible for a large portion of worldwide economic development. Although it is widely considered a silent world, the sea is filled with natural sounds generated by marine life and geological processes. Man-made underwater sounds, such as active sonars, maritime traffic, and offshore oil and mineral exploration, have significantly affected underwater soundscapes and species. In this work, we report on a joint optical fiber-based communication and sensing technology aiming to reduce noise pollution in the sea while providing connectivity simultaneously with a variety of underwater applications. The designed multifunctional fiber-based system enables two-way data transfer, monitoring marine life and ship movement near the deployed fiber at the sea bottom and sensing temperature. The deployed fiber is equally harnessed to transfer energy that the internet of underwater things (IoUTs) devices can harvest. The reported approach significantly reduces the costs and effects of monitoring marine ecosystems while ensuring data transfer and ocean monitoring applications and providing continuous power for submerged IoUT devices.

4.
Front Oncol ; 13: 1164153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305576

RESUMO

Primary cardiac angiosarcoma is a relatively rare tumor with early metastasis and poor prognosis. Radical resection of the primary tumor remains the primary approach for the optimal survival of patients with early-stage cardiac angiosarcoma without evidence of metastasis. This case involves a 76-year-old man with symptoms of chest tightness, fatigue, pericardial effusion, and arrhythmias who achieved good results after surgery to treat the angiosarcoma in the right atrium. In addition, literature analysis showed that surgery remains an effective way of treating primary early angiosarcoma.

5.
Perfusion ; : 2676591231178894, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224394

RESUMO

OBJECTIVE: The optimal treatment of patients with severe aortic stenosis (AS) and complex coronary artery disease (CAD) remains controversial. We conducted a meta-analysis to investigate outcomes of transcatheter aortic valve replacement (TAVR) with percutaneous coronary intervention (PCI) versus surgical aortic valve replacement (SAVR) with coronary artery bypass grafting (CABG). METHODS: We searched PubMed, Embase, and Cochrane databases from its inception up to 17 December 2022 for studies that assessed TAVR + PCI versus SAVR + CABG in patients with AS and CAD. The primary outcome was perioperative mortality. RESULTS: Six observational studies including 135,003 patients assessing TAVI + PCI (n = 6988) versus SAVR + CABG (n = 128,015) were included. Compared to SAVR + CABG, TAVR + PCI was not significantly associated with perioperative mortality (RR, 0.76; 95% CI, 0.48-1.21; p = 0.25), vascular complications (RR, 1.85; 95% CI, 0.72-4.71; p = 0.20), acute kidney injury (RR, 0.99; 95% CI, 0.73-1.33; p = 0.95), myocardial infraction (RR, 0.73; 95% CI, 0.30-1.77; p = 0.49), or stroke (RR, 0.87; 95% CI, 0.74-1.02; p = 0.09). TAVR + PCI significantly reduced the incidence of major bleeding (RR, 0.29; 95% CI, 0.24-0.36; p < 0.01) and length of hospital stay (MD, -1.60; 95% CI, -2.45 to -0.76; p < 0.01), but increased the incidence of pacemaker implantation (RR, 2.03; 95% CI, 1.88-2.19; p < 0.01). At follow-up, TAVR + PCI was significantly associated with coronary reintervention (RR, 3.17; 95% CI, 1.03-9.71; p = 0.04) and a reduced rate of long-term survival (RR, 0.86; 95% CI, 0.79-0.94; p < 0.01). CONCLUSIONS: In patients with AS and CAD, TAVR + PCI did not increase perioperative mortality, but increased the rates of coronary reintervention and long-term mortality.

6.
Mol Psychiatry ; 27(12): 5195-5205, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36065016

RESUMO

Antipsychotic-induced metabolic syndrome (APs-induced Mets) is the most common adverse drug reaction, which affects more than 60% of the psychiatric patients. Although the etiology of APs-induced Mets has been extensively investigated, there is a lack of integrated analysis of the genetic and epigenetic factors. In this study, we performed genome-wide, whole-exome sequencing (WES) and epigenome-wide association studies in schizophrenia (SCZ) patients with or without APs-induced Mets to find the underlying mechanisms, followed by in vitro and in vivo functional validations. By population-based omics analysis, we revealed that rare functional variants across in the leptin and peroxisome proliferator-activated receptors (PPARs) gene sets were imbalanced with rare functional variants across the APs-induced Mets and Non-Mets cohort. Besides, we discovered that APs-induced Mets are hypermethylated in ABCG1 (chr21:43642166-43642366, adjusted P < 0.05) than Non-Mets, and hypermethylation of this area was associated with higher TC (total cholesterol) and TG (triglycerides) levels in HepG2 cells. Candidate genes from omics studies were furtherly screened in C. elegans and 17 gene have been verified to associated with olanzapine (OLA) induced fat deposit. Among them, several genes were expressed differentially in Mets cohort and APs-induced in vitro/in vivo models compared to controls, demonstrating the validity of omics study. Overexpression one of the most significant gene, PTPN11, exhibited compromised glucose responses and insulin resistance. Pharmacologic inhibition of PTPN11 protected HepG2 cell from APs-induced insulin resistance. These findings provide important insights into our understanding of the mechanism of the APs-induced Mets.


Assuntos
Antipsicóticos , Leptina , Síndrome Metabólica , Receptores Ativados por Proliferador de Peroxissomo , Animais , Humanos , Antipsicóticos/efeitos adversos , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Caenorhabditis elegans , Resistência à Insulina/genética , Leptina/genética , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Multiômica , Receptores Ativados por Proliferador de Peroxissomo/genética
7.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080949

RESUMO

Red palm weevil (RPW) is a harmful pest that destroys many date, coconut, and oil palm plantations worldwide. It is not difficult to apply curative methods to trees infested with RPW; however, the early detection of RPW remains a major challenge, especially on large farms. In a controlled environment and an outdoor farm, we report on the integration of optical fiber distributed acoustic sensing (DAS) and machine learning (ML) for the early detection of true weevil larvae less than three weeks old. Specifically, temporal and spectral data recorded with the DAS system and processed by applying a 100-800 Hz filter are used to train convolutional neural network (CNN) models, which distinguish between "infested" and "healthy" signals with a classification accuracy of ∼97%. In addition, a strict ML-based classification approach is introduced to improve the false alarm performance metric of the system by ∼20%. In a controlled environment experiment, we find that the highest infestation alarm count of infested and healthy trees to be 1131 and 22, respectively, highlighting our system's ability to distinguish between the infested and healthy trees. On an outdoor farm, in contrast, the acoustic noise produced by wind is a major source of false alarm generation in our system. The best performance of our sensor is obtained when wind speeds are less than 9 mph. In a representative experiment, when wind speeds are less than 9 mph outdoor, the highest infestation alarm count of infested and healthy trees are recorded to be 1622 and 94, respectively.


Assuntos
Gorgulhos , Acústica , Animais , Larva , Redes Neurais de Computação , Fibras Ópticas
8.
Anal Chem ; 94(26): 9363-9371, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35723440

RESUMO

A signal-amplified electrochemiluminescent (ECL) sensor chip was developed for sensitive analysis of procalcitonin (PCT). Herein, we first prepared a self-enhanced luminophore, which enhanced ECL responses through intramolecular reactions. Second, Au-Pd bimetallic nanocrystals and mixed-valence Ce-based metal-organic frameworks (MOFs) were introduced as co-reaction promoters to facilitate the reduction of dissolved O2. Based on the synergistic catalysis of Au and Pd, the spontaneous cyclic reaction of Ce(III)/Ce(IV), and the high electrochemical active surface area of Ce(III, IV) MOF, a large number of superoxide anion radicals (O2•-) and hydroxyl radicals (OH•) were produced. Therefore, the luminescence efficiency of N-(aminobutyl)-N-(ethylisoluminol)-dissolved O2 (ABEI-O2) systems were greatly improved, providing a new prospect for the application of dissolved O2 in ECL analysis. In addition, the affinity peptide ligands were used for the directional connection of antibodies to provide protection for the bioactivity of the proposed sensor. Finally, the microfluidic technology was applied to ECL analysis to integrate the three-electrode detection system into the self-assembled microfluidic chip, which realized the automation and portability of the detection process. The developed sensor showed high sensitivity for PCT detection with a detection limit of 3.46 fg/mL, which possessed positive significance for the clinical diagnosis of sepsis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Medições Luminescentes/métodos , Luminol/análogos & derivados , Nanopartículas Metálicas/química , Microfluídica , Pró-Calcitonina/análise
9.
Opt Express ; 30(1): 53-69, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201194

RESUMO

The growing need for ocean monitoring and exploration has boosted underwater wireless optical communication (UWOC) technology. To solve the challenges of pointing, acquisition, and tracking (PAT) in UWOC technology, herein, we propose a 450-nm-laser/scintillating-fiber-based full-duplex (FD)-UWOC system for omnidirectional signal detection in real scenarios. The FD-UWOC system has a -3 dB bandwidth of 67 MHz with a low self-interference level of -44.59 dB. It can achieve a 250-Mbit/s data rate with on-off keying modulation scheme. The system's robustness was validated by operating over 1.5-m underwater channel with air-bubble-, temperature-, salinity-, turbidity-, and mobility-induced turbulence with a low outage probability. Under air-bubble-induced turbulence, the highest outage probability was 28%. With temperature-, salinity-, and turbidity-induced turbulence, the system performed adequately, showing a highest outage probability of 0%, 3%, and 4%, respectively. In mobile cases, the highest outage probability of the FD-UWOC system was 14%, compared to an outage probability of 100% without utilizing the fluorescent optical antenna. To further validate its robustness, a deployment test was conducted in an outdoor diving pool. The system achieved a 250-Mbit/s data rate over a 7.5-m working distance in the stationary case and a 1-m working range in the mobile case with a 0% outage probability. The scintillating-fiber-based detector can be employed in UWOC systems and would help relieve PAT issues.

10.
Talanta ; 233: 122552, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215055

RESUMO

In this work, a fire-new "signal-off" type photoelectrochemical (PEC) immunosensor based on bismuth sulfide/iodine doped bismuth oxychloride (Bi2S3/I:BiOCl) heterostructure as a platform and Au nanoparticles loaded hollow CoSnO3 nanoboxes (Au NPs@CoSnO3) as quenching label was designed, for sensitive detection of CYFRA 21-1. The I:BiOCl with flower-like structure could supply high specific surface area for loading nanometer materials. Then, Bi2S3 was formed in-situ by S2- adsorption on the surface of I:BiOCl by dangling bond of Bi3+, but did not change the flower-like structure of I:BiOCl. Then, n-type Bi2S3 and p-type I:BiOCl heterostructure showed good photoelectric behavior by providing an additional electric field to accelerate electron-hole separation. Furthermore, the production process of the heterostructure was simple, fast, low temperature, and without complex raw materials. The Au NPs@CoSnO3 with good photocatalytic activity could strongly compete with Bi2S3/I:BiOCl for electron donor of ascorbic acid (AA). Meanwhile, the CoSnO3 with hollow structure made the quenching effect more significant by the light-scattering effect that enhanced the light absorption capacity and shorten distance of carrier transport. Under optimal conditions, this proposed strategy displayed the low detection limit of 30 fg/mL, with a high linearity range from 100 fg/mL to 100 ng/mL for tumor markers CYFRA 21-1. Simultaneously, it also exhibited excellent specificity and acceptable stability, which might provide a new perspective for the fabrication of other PEC immunosensors with heterostructure simple synthesis and hollow materials.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antígenos de Neoplasias , Técnicas Eletroquímicas , Ouro , Imunoensaio , Queratina-19 , Limite de Detecção
11.
Front Plant Sci ; 12: 798581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35197990

RESUMO

The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as "barcodes" or "identity cards" for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences.

12.
Opt Express ; 27(24): 34542-34551, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878642

RESUMO

Enhancing robustness and energy efficiency is critical in visible light communication (VLC) to support large-scale data traffic and connectivity of smart devices in the era of fifth-generation networks. To this end, we demonstrate that amorphous silicon (a-Si) thin-film solar cells with a high light absorption coefficient are particularly useful for simultaneous robust signal detection and efficient energy harvesting under the condition of weak light in this study. Moreover, a first-generation prototype called AquaE-lite is developed that consists of an a-Si thin-film solar panel and receiver circuits, which can detect weak light as low as 1 µW/cm2. Using AquaE-lite and a white-light laser, orthogonal frequency-division multiplexing signals with data rates of 1 Mb/s and 908.2 kb/s are achieved over a 20-m long-distance air channel and 2.4-m turbid outdoor pool water, respectively, under the condition of strong background light. The reliable VLC system based on energy-efficient a-Si thin-film solar cells opens a new pathway for future satellite-air-ground-ocean optical wireless communication to realize connectivity among millions of Internet of Things devices.

13.
Opt Express ; 27(21): 30450-30461, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684293

RESUMO

Underwater wireless optical communication (UWOC) can offer reliable and secure connectivity for enabling future internet-of-underwater-things (IoUT), owing to its unlicensed spectrum and high transmission speed. However, a critical bottleneck lies in the strict requirement of pointing, acquisition, and tracking (PAT), for effective recovery of modulated optical signals at the receiver end. A large-area, high bandwidth, and wide-angle-of-view photoreceiver is therefore crucial for establishing a high-speed yet reliable communication link under non-directional pointing in a turbulent underwater environment. In this work, we demonstrated a large-area, of up to a few tens of cm2, photoreceiver design based on ultraviolet(UV)-to-blue color-converting plastic scintillating fibers, and yet offering high 3-dB bandwidth of up to 86.13 MHz. Tapping on the large modulation bandwidth, we demonstrated a high data rate of 250 Mbps at bit-error ratio (BER) of 2.2 × 10-3 using non-return-to-zero on-off keying (NRZ-OOK) pseudorandom binary sequence (PRBS) 210-1 data stream, a 375-nm laser-based communication link over the 1.15-m water channel. This proof-of-concept demonstration opens the pathway for revolutionizing the photodetection scheme in UWOC, and for non-line-of-sight (NLOS) free-space optical communication.

14.
Opt Express ; 26(6): 6614-6628, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609349

RESUMO

Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (ß) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and ß, while the second model provides a relation between ß, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

15.
Opt Express ; 24(22): 25502-25509, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828488

RESUMO

The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.

16.
Data Brief ; 9: 81-4, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27656666

RESUMO

Polymerase chain reaction (PCR) technique is widely used in many experimental conditions, and Taq DNA polymerase is critical in PCR process. In this article, the Taq DNA polymerase expression plasmid is reconstructed and the protein product is obtained by rapid purification, ("Rapid purification of high-activity Taq DNA polymerase" (Pluthero, 1993 [1]), "Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli" (Desai and Pfaffle, 1995 [2])). Here we present the production data from protein expression and provide the analysis results of the production from two different vectors. Meanwhile, the purification data is also provided to show the purity of the protein product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...