Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Commun Biol ; 7(1): 394, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561421

RESUMO

Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.


Assuntos
Diagnóstico por Imagem , Técnicas Genéticas , Animais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Corantes , Mamíferos/genética
2.
Curr Microbiol ; 81(3): 87, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311653

RESUMO

Soybean are one of the main oil crops in the world. The study demonstrated that co-inoculation with Trichoderma asperellum (Sordariomycetes, Hypocreomycetidae) and Irpex laceratus (Basidiomycota, Polyporales) isolated from Kosteletzkya virginica can promote the growth of soybean seedlings. The two fungi were found to produce various enzymes, including cellulase, amylase, laccase, protease, and urease. Upon inoculation, T. asperellum mainly colonized within the phloem of the roots in soybean seedlings, while I. laceratus mainly in the xylem and phloem of the roots. Physiological parameters, such as plant height, root length, and fresh weight, were significantly increased in soybean seedlings co-inoculated with T. asperellum and I. laceratus. Moreover, the expression of key genes related to N and P absorption and metabolism was also increased, leading to improved N and P utilization efficiency in soybean seedlings. These results indicate that the two fungi may have complementary roles in promoting plant growth, co-inoculation with T. asperellum and I. laceratus can enhance the growth and nutrient uptake of soybean. These findings suggest that T. asperellum and I. laceratus have the potential to be used as bio-fertilizers to improve soybean growth and yield.


Assuntos
Basidiomycota , Hypocreales , Polyporales , Trichoderma , Plântula , Fósforo/metabolismo , Glycine max , Nitrogênio/metabolismo , Basidiomycota/metabolismo , Polyporales/metabolismo , Trichoderma/fisiologia
3.
J Appl Gerontol ; : 7334648241231406, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311959

RESUMO

The long-term symptoms associated with Alzheimer's disease pose significant challenges to the psychological wellbeing of patients. This longitudinal study aims to analyze the effects of socioeconomic factors and physical health factors on the psychological wellbeing of older patients diagnosed with Alzheimer's disease (AD) receiving home care, as well as the moderating role of aging and care support in influencing their psychological wellbeing. Data from the Health and Retirement Study (N = 628 older Alzheimer's patients) were analyzed using pooled ordinary least squares fixed-effects models. Findings suggest that Alzheimer's patients' psychological wellbeing was significantly affected by factors including cohabitation, gender, assistance frequency, age, education, and daily activity challenges, with assistance and increasing age mitigating some daily difficulties. The findings underline the multifactorial nature of psychological wellbeing among older Alzheimer's patients in home care and the critical role of social and physical health determinants in shaping these outcomes.

4.
iScience ; 27(1): 108385, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205255

RESUMO

We introduce an all-optical technique that enables volumetric imaging of brain-wide calcium activity and targeted optogenetic stimulation of specific brain regions in unrestrained larval zebrafish. The system consists of three main components: a 3D tracking module, a dual-color fluorescence imaging module, and a real-time activity manipulation module. Our approach uses a sensitive genetically encoded calcium indicator in combination with a long Stokes shift red fluorescence protein as a reference channel, allowing the extraction of Ca2+ activity from signals contaminated by motion artifacts. The method also incorporates rapid 3D image reconstruction and registration, facilitating real-time selective optogenetic stimulation of different regions of the brain. By demonstrating that selective light activation of the midbrain regions in larval zebrafish could reliably trigger biased turning behavior and changes of brain-wide neural activity, we present a valuable tool for investigating the causal relationship between distributed neural circuit dynamics and naturalistic behavior.

5.
Mol Oral Microbiol ; 39(2): 80-90, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37715517

RESUMO

Type 2 diabetes (T2D) is a chronic metabolic disorder in which insulin resistance and impaired insulin secretion result in altered metabolite balance, specifically elevated levels of circulating glucose and succinate, which increases the risk of many pathologies, including periodontitis. Succinate, a tricarboxylic acid (TCA) cycle intermediate, can be produced and metabolized by both host cells and host microbiota, where elevated levels serve as an inflammation and pathogen threat signal through activating the succinate G protein-coupled receptor, SUCNR1. Modulating succinate-induced SUCNR1 signaling remains a promising therapeutic approach for pathologies resulting in elevated levels of succinate, such as T2D and periodontitis. Here, we demonstrate hyperglycemia and elevated intracellular succinate in a T2D mouse model and determine gut microbiome composition. Drawing on previous work demonstrating the ability of a novel SUCNR1 antagonist, compound 7a, to block inflammation and alleviate dysbiosis in a mouse model, we examined if compound 7a has an impact on the growth and virulence gene expression of bacterial and fungal human microbiota in vitro, and if 7a could reduce bone loss in a periodontitis-induced mouse model. T2D mice harbored a significantly different gut microbiome, suggesting the altered metabolite profile of T2D causes shifts in host-microbial community structure, with enrichment in succinate producers and consumers and mucin-degrading bacteria. Bacterial and fungal cultures showed that 7a did not influence growth or virulence gene expression, suggesting the therapeutic effects of 7a are a direct result of 7a interacting with host cells and that alterations in microbial community structure are driven by reduced host SUCNR1 signaling. This work further suggests that targeting SUCNR1 signaling is a promising therapeutic approach in metabolic, inflammatory, or immune disorders with elevated succinate levels.


Assuntos
Diabetes Mellitus Tipo 2 , Microbiota , Periodontite , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Disbiose/tratamento farmacológico , Inflamação , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Succinatos , Periodontite/tratamento farmacológico
6.
J Agric Food Chem ; 71(48): 18865-18876, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053505

RESUMO

Most red-fleshed kiwifruit cultivars, such as Hongyang, only accumulate anthocyanins in the inner pericarp; the trait of full red flesh becomes the goal pursued by breeders. In this study, we identified a mutant "H-16" showing a red color in both the inner and outer pericarps, and the underlying mechanism was explored. Through transcriptome analysis, a key differentially expressed gene AcGST1 was screened out, which was positively correlated with anthocyanin accumulation in the outer pericarp. The result of McrBC-PCR and bisulfite sequencing revealed that the SG3 region (-292 to -597 bp) of AcGST1 promoter in "H-16" had a significantly lower CHH cytosine methylation level than that in Hongyang, accompanied by low expression of methyltransferase genes (MET1 and CMT2) and high expression of demethylase genes (ROS1 and DML1). Transient calli transformation confirmed that demethylase gene DML1 can activate transcription of AcGST1 to enhance its expression. Overexpression of AcGST1 enhanced the anthocyanin accumulation in the fruit flesh and leaves of the transgenic lines. These results suggested that a decrease in the methylation level of the AcGST1 promoter may contribute to accumulation of anthocyanin in the outer pericarp of "H-16".


Assuntos
Actinidia , Frutas , Frutas/química , Antocianinas/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Metilação de DNA , Actinidia/genética , Actinidia/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Curr Issues Mol Biol ; 45(12): 9692-9708, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132451

RESUMO

The CHX (cation/H+ exchanger) family plays an important role in the transmembrane transport of cation/H+ in plants. The aim of this study was to identify and functionally analyze the KvCHX gene in the halophyte Kosteletzkya virginica to investigate its role in regulating the K+/Na+ ratio under salinity tolerance. Based on a partial gene sequence of EST from K. virginica, the full-length DNA sequence of the KvCHX gene was obtained using genome walking technology. Structural analysis and phylogenetic relationship analysis showed that the KvCHX gene was closely related to the AtCHX17 gene. The KvCHX overexpression vector was successfully constructed and transformed into Arabidopsis via floral dipping. Arabidopsis seedlings overexpressing KvCHX showed an enhanced tolerance to salt stress compared with wild-type plants. Transgenic Arabidopsis seedlings grew better under K+ deficiency than WT. The results showed that KvCHX could promote the uptake of K+, increase the ratio of K+/Na+, and promote the growth of plants under K+ deficiency and treatment with NaCl solution. KvCHX is involved in K+ transport and improves plant salt tolerance by coordinating K+ acquisition and homeostasis.

8.
Arch Microbiol ; 206(1): 3, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991548

RESUMO

Psoriasis is one of the common chronic inflammatory skin diseases worldwide. The skin microbiota plays a role in psoriasis through regulating skin homeostasis. However, the studies on the interactions between symbiotic microbial strains and psoriasis are limited. In this study, Staphylococcus strain XSB102 was isolated from the skin of human, which was identified as Staphylococcus warneri using VITEK2 Compact. To reveal the roles of Staphylococcus warneri on psoriasis, XSB102 were applied on the back of imiquimod-induced psoriasis-like dermatitis mice. The results indicated that it exacerbated the psoriasis and significantly increased the thickening of the epidermis. Furthermore, in vitro experiments confirmed that inactivated strain XSB102 could promote the proliferation of human epidermal keratinocytes (HaCaT) cell. However, real-time quantitative PCR and immunofluorescence results suggested that the expression of inflammatory factors such as IL-17a, IL-6, and so on were not significantly increased, while extracellular matrix related factors such as Col6a3 and TGIF2 were significantly increased after XSB102 administration. This study indicates that Staphylococcus warneri XSB102 can exacerbate psoriasis and promote keratinocyte proliferation independently of inflammatory factors, which paves the way for further exploration of the relationship between skin microbiota and psoriasis.


Assuntos
Dermatite , Psoríase , Camundongos , Humanos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Psoríase/induzido quimicamente , Psoríase/metabolismo , Pele , Queratinócitos/metabolismo , Staphylococcus/genética , Proliferação de Células , Dermatite/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas Repressoras/metabolismo , Proteínas de Homeodomínio/efeitos adversos , Proteínas de Homeodomínio/metabolismo
9.
Anal Methods ; 15(41): 5492-5499, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37842813

RESUMO

A novel method based on homogeneous liquid-liquid extraction with deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC) for the determination of chiral fungicide triadimefon (TF) and its metabolite triadimenol (TN) in water, fruit juice, vinegar, and fermented liquor was developed in this study. The method involved using deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC). This novel technique, known as subzero-temperature homogeneous liquid-liquid extraction (STHLLE), offers several advantages, including high efficiency, time-saving, low-cost, and eco-friendliness. The enantiomers of chiral TF and TN were simultaneously separated and quantified using HPLC coupled with a Daicel Chiralpak OD-RH column. Various experimental parameters such as DES composition and volume, freezing condition, salt concentration, and pH were optimized to enhance the recoveries of the target analytes. Under the optimized conditions, spiked recoveries of six enantiomers (i.e., S-TF, R-TF, SR-TN, RS-TN, SS-TN, and RR-TN) in the water, fruit juice, vinegar, and fermented liquor samples were 82.2-100.1% with relative standard deviations of 0.4-10.1%. The current method demonstrated a detection range of 0.03-0.06 mg L-1 in the target analytes. This established technique exhibits potential for efficient and precise extraction and quantification of the enantiomers of TF and TN in water phase samples.


Assuntos
Ácido Acético , Água , Cromatografia Líquida de Alta Pressão/métodos , Água/química , Temperatura , Sucos de Frutas e Vegetais , Solventes Eutéticos Profundos , Extração Líquido-Líquido
10.
Diabetes Metab ; 49(5): 101475, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37678758

RESUMO

AIM: Studies investigating the association between sodium intake and new-onset atrial fibrillation (AF) have come to controversial results. This study aimed to assess the effect of excessive sodium intake on new-onset AF in individuals with hyperglycemia. METHODS: Between April 2007 and November 2011, 2841 community-dwelling individuals aged 60 years and older were recruited from the Shandong area, China. Dietary sodium intake was estimated using 24-hour urine collection within seven consecutive days. Fasting plasma glucose (FPG) and glycated hemoglobin (HbA1c) were assessed. New-onset AF was diagnosed using ICD-10 with codes I48 (I48.0 - I48.9) during follow-up. RESULTS: The findings were that excessive sodium intake significantly and independently increased the risk of new-onset AF in older adults with hyperglycemia: hazard ratio (HR) 1.525 [95% confidence interval 1.147;2.029] adjusted P = 0.004. The risk of new-onset AF increased by 29.3% (HR 1.293 [1.108;1.509] adjusted P = 0.001) with a one-standard deviation increase in sodium intake. Excessive sodium intake synergistically interacted with hyperglycemia on the increased risk of new-onset AF (HR 1.599 [1.342;1.905] adjusted P < 0.001 for FPG and HR 1.516 [1.271;1.808] adjusted P < 0.001 for HbA1c). CONCLUSION: Our findings indicate that excessive sodium intake independently enhances the risk of new-onset AF among patients with hyperglycemia. A sodium-restricted diet may perhaps result in a multiplier effect on reducing the risk of new-onset AF.

11.
Clin Exp Hypertens ; 45(1): 2253381, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652577

RESUMO

BACKGROUND: The impacts and mechanisms of morning hypertension (MHT) on the risk of new-onset atrial fibrillation (AF) in the elderly have not been clarified. We aimed to investigate an association between MHT and new-onset AF and explore a mediating effect of subclinical inflammation on this association. METHODS: From 2008 to 2010, 1789 older adults aged ≥60 years were recruited in Shandong area, China. Morning blood pressure (BP) was assessed using 24-hour ambulatory BP monitoring. MHT was defined as BP ≥ 135/85 mm Hg during the period from wake time to 0900 a.m. Subclinical inflammation was assessed by hypersensitive C-reactive protein (hsCRP), tumor necrosis factor-alpha (TNF-α), systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and galectin-3. New-onset AF was rated during the follow-up period. RESULTS: Over an average 129.0 [standard deviation (SD): 21.58] months of follow-up, the hazard ratio of new-onset AF in MHT patients was 1.39 (95% confidence interval: 1.01 to 1.91) compared with non-MHT participants (Padjusted = 0.027). The risk of new-onset AF was 1.17-fold with one-SD increment of morning systolic BP. Subclinical inflammation was significantly associated with new-onset AF. The hazard ratios of new-onset AF were 2.29, 2.04, 2.08, 2.08, 2.03, and 3.25 for one-SD increment in hsCRP, TNF-α, SII, NLR, PLR, and galectin-3, respectively (Padjusted < 0.001). The analysis showed that hsCRP, TNF-α, SII, NLR, PLR, and galectin-3 separately mediated the process of MHT inducing new-onset AF (Padjusted < 0.05). CONCLUSIONS: MHT is associated with an increased risk of new-onset AF. The subclinical inflammation might play a mediating role in this association.


Assuntos
Fibrilação Atrial , Hipertensão , Idoso , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Proteína C-Reativa , Galectina 3 , Fator de Necrose Tumoral alfa , Inflamação/complicações , Hipertensão/complicações
12.
ChemSusChem ; 16(17): e202202297, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37424157

RESUMO

Solid-state zinc ion batteries (ZIBs) and aluminum-ion batteries (AIBs) are deemed as promising candidates for supplying power in wearable devices due to merits of low cost, high safety, and tunable flexibility. However, their wide-scale practical application is limited by various challenges, down to the material level. This Review begins with elaboration of the root causes and their detrimental effect for four main limitations: electrode-electrolyte interface contact, electrolyte ionic conductivity, mechanical strength, and electrochemical stability window of the electrolyte. Thereafter, various strategies to mitigate each of the described limitation are discussed along with future research direction perspectives. Finally, to estimate the viability of these technologies for wearable applications, economic-performance metrics are compared against Li-ion batteries.

13.
Elife ; 122023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417730

RESUMO

Diabetes mellitus is a group of chronic diseases characterized by high blood glucose levels. Diabetic patients have a higher risk of sustaining osteoporotic fractures than non-diabetic people. The fracture healing is usually impaired in diabetics, and our understanding of the detrimental effects of hyperglycemia on fracture healing is still inadequate. Metformin is the first-line medicine for type 2 diabetes (T2D). However, its effects on bone in T2D patients remain to be studied. To assess the impacts of metformin on fracture healing, we compared the healing process of closed-wound fixed fracture, non-fixed radial fracture, and femoral drill-hole injury models in the T2D mice with and without metformin treatment. Our results demonstrated that metformin rescued the delayed bone healing and remolding in the T2D mice in all injury models. In vitro analysis indicated that compromised proliferation, osteogenesis, chondrogenesis of the bone marrow stromal cells (BMSCs) derived from the T2D mice were rescued by metformin treatment when compared to WT controls. Furthermore, metformin could effectively rescue the impaired detrimental lineage commitment of BMSCs isolated from the T2D mice in vivo as assessed by subcutaneous ossicle formation of the BMSC implants in recipient T2D mice. Moreover, the Safranin O staining of cartilage formation in the endochondral ossification under hyperglycemic condition significantly increased at day 14 post-fracture in the T2D mice receiving metformin treatment. The chondrocyte transcript factors SOX9 and PGC1α, important to maintain chondrocyte homeostasis, were both significantly upregulated in callus tissue isolated at the fracture site of metformin-treated MKR mice on day 12 post-fracture. Metformin also rescued the chondrocyte disc formation of BMSCs isolated from the T2D mice. Taken together, our study demonstrated that metformin facilitated bone healing, more specifically bone formation and chondrogenesis in T2D mouse models.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Células-Tronco Mesenquimais , Metformina , Camundongos , Animais , Metformina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Calo Ósseo , Osteogênese
14.
Cell Biosci ; 13(1): 130, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468984

RESUMO

BACKGROUND: The temporomandibular joint (TMJ) is a complex joint consisting of the condyle, the temporal articular surface, and the articular disc. Functions such as mastication, swallowing and articulation are accomplished by the movements of the TMJ. To date, the TMJ has been studied more extensively, but the types of TMJ cells, their differentiation, and their interrelationship during growth and development are still unclear and the study of the TMJ is limited. The aim of this study was to establish a molecular cellular atlas of the human embryonic temporomandibular joint condyle (TMJC) by single-cell RNA sequencing, which will contribute to understanding and solving clinical problems. RESULTS: Human embryos at 3 and 4 months of age are an important stage of TMJC development. We performed a comprehensive transcriptome analysis of TMJC tissue from human embryos at 3 and 4 months of age using single-cell RNA sequencing. A total of 16,624 cells were captured and the gene expression profiles of 15 cell clusters in human embryonic TMJC were determined, including 14 known cell types and one previously unknown cell type, "transition state cells (TSCs)". Immunofluorescence assays confirmed that TSCs are not the same cell cluster as mesenchymal stem cells (MSCs). Pseudotime trajectory and RNA velocity analysis revealed that MSCs transformed into TSCs, which further differentiated into osteoblasts, hypertrophic chondrocytes and tenocytes. In addition, chondrocytes (CYTL1high + THBS1high) from secondary cartilage were detected only in 4-month-old human embryonic TMJC. CONCLUSIONS: Our study provides an atlas of differentiation stages of human embryonic TMJC tissue cells, which will contribute to an in-depth understanding of the pathophysiology of the TMJC tissue repair process and ultimately help to solve clinical problems.

15.
BMC Geriatr ; 23(1): 263, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131130

RESUMO

BACKGROUND: It is unclear whether excessive salt intake accelerates the progression of cerebral small vessel disease (CSVD). The major objective of this study was to investigate the harmful effect of excessive salt intake on the progression of CSVD in older individuals. METHODS: Between May 2007 and November 2010, 423 community-dwelling individuals aged 60 years and older were recruited from the Shandong area, China. Salt intake was estimated using 24-hour urine collection for 7 consecutive days at baseline. Participants were classified into low, mild, moderate and high groups according to the salt intake estimation. CSVD including white matter hyperintensities (WMHs), lacunes, microbleeds and an enlarged perivascular space (EPVS) were determined using brain magnetic resonance imaging. RESULTS: During an average of five years of follow-up, the WMH volume and WMH-to-intracranial ratio were increased in the four groups. However, the increasing trends in the WMH volume and WMH-to-intracranial ratio were significantly faster in the higher salt intake groups compared with the lower salt intake groups (Padjusted < 0.001). The cumulative hazard ratios of new-incident WMHs (defined as those with Fazekas scale scores ≥ 2), new-incident lacunes, microbleeds or an EPVS, as well as composites of CSVD, were respectively 2.47, 2.50, 3.33, 2.70 and 2.89 for the mild group; 3.72, 3.74, 4.66, 4.01 and 4.49 for the moderate group; and 7.39, 5.82, 7.00, 6.40 and 6.61 for the high group, compared with the low group after adjustment for confounders (Padjusted < 0.001). The risk of new-incident WMHs, lacunes, microbleeds or an EPVS, and composites of CSVD was significantly increased with each 1-standard-deviation increment in salt intake (Padjusted < 0.001). CONCLUSION: Our data indicates that excessive salt intake is an important and independent contributor to the progression of CVSD in older adults.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Cloreto de Sódio na Dieta , Humanos , Pessoa de Meia-Idade , Idoso , Cloreto de Sódio na Dieta/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/etiologia , Hemorragia Cerebral
16.
Int J Biol Macromol ; 242(Pt 3): 124928, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224896

RESUMO

Fruits provide abundant carotenoid nutrients for humans, whereas the understanding of the transcriptional regulatory mechanisms of carotenoids in fruits is still limited. Here, we identified a transcription factor AcMADS32 in kiwifruit, which was highly expressed in the fruit, correlated with carotenoid content and localized in the nucleus. The silencing expression of AcMADS32 significantly reduced the content of ß-carotene and zeaxanthin and expression of ß-carotene hydroxylase gene AcBCH1/2 in kiwifruit, while transient overexpression increased the accumulation of zeaxanthin, suggesting that AcMADS32 was an activator involved in the transcriptional regulation of carotenoid in fruit. When AcMADS32 was further stably transformed into kiwifruit, the content of total carotenoid and components in the leaves of transgenic lines significantly increased, and the expression level of carotenogenic genes was up-regulated. Moreover, Y1H and dual luciferase reporter experiments confirmed that AcMADS32 directly bound the AcBCH1/2 promoter and activated its expression. Through Y2H assays, AcMADS32 can interact with other MADS transcription factor AcMADS30, AcMADS64 and AcMADS70. These findings will contribute to our understanding of the transcriptional regulation mechanisms underlying carotenoid biosynthesis in plants.


Assuntos
Carotenoides , Frutas , Humanos , Frutas/genética , Frutas/metabolismo , Zeaxantinas/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Front Public Health ; 11: 1111661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006544

RESUMO

Comprehensive surveillance systems are the key to provide accurate data for effective modeling. Traditional symptom-based case surveillance has been joined with recent genomic, serologic, and environment surveillance to provide more integrated disease surveillance systems. A major gap in comprehensive disease surveillance is to accurately monitor potential population behavioral changes in real-time. Population-wide behaviors such as compliance with various interventions and vaccination acceptance significantly influence and drive the overall epidemic dynamics in the society. Original infoveillance utilizes online query data (e.g., Google and Wikipedia search of a specific content topic such as an epidemic) and later focuses on large volumes of online discourse data about the from social media platforms and further augments epidemic modeling. It mainly uses number of posts to approximate public awareness of the disease, and further compares with observed epidemic dynamics for better projection. The current COVID-19 pandemic shows that there is an urgency to further harness the rich, detailed content and sentiment information, which can provide more accurate and granular information on public awareness and perceptions toward multiple aspects of the disease, especially various interventions. In this perspective paper, we describe a novel conceptual analytical framework of content and sentiment infoveillance (CSI) and integration with epidemic modeling. This CSI framework includes data retrieval and pre-processing; information extraction via natural language processing to identify and quantify detailed time, location, content, and sentiment information; and integrating infoveillance with common epidemic modeling techniques of both mechanistic and data-driven methods. CSI complements and significantly enhances current epidemic models for more informed decision by integrating behavioral aspects from detailed, instantaneous infoveillance from massive social media data.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Infodemiologia , Atitude
18.
J Agric Food Chem ; 71(17): 6584-6593, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37076425

RESUMO

The marine-derived Streptomyces sp. FIMYZ-003 strain was found to produce novel siderophores with yields negatively correlated with the iron concentration in the medium. Mass spectrometry (MS)-based metabolomics coupled with metallophore assays identified two novel α-hydroxycarboxylate-type siderophores, fradiamines C and D (3 and 4), together with two related known siderophores, fradiamines A and B (1 and 2). Their chemical structures were elucidated by nuclear magnetic resonance (NMR) and MS experiments. The annotation of a putative fra biosynthetic gene cluster enabled us to propose the biosynthetic pathway of fradiamines A-D. Furthermore, the solution-phase iron-binding activity of fradiamines was evaluated using metabolomics, confirming them as general iron scavengers. Fradiamines A-D exhibited Fe(III) binding activity equivalent to that of deferoxamine B mesylate. Growth analysis of pathogenic microbes demonstrated that fradiamine C promoted the growth of Escherichia coli and Staphylococcus aureus, but fradiamines A, B, and D did not. The results indicate that fradiamine C may serve as a novel iron carrier applicable to antibiotic delivery strategies to treat and prevent foodborne pathogens.


Assuntos
Compostos Férricos , Sideróforos , Quelantes , Ferro/metabolismo , Metabolômica , Sideróforos/química , Sideróforos/genética , Sideróforos/metabolismo , Streptomycetaceae/química , Streptomycetaceae/metabolismo
19.
Comput Biol Med ; 158: 106872, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030269

RESUMO

Belonging to type 1 innate lymphoid cells (ILC1), natural killer (NK) cells play an important role not only in fighting microbial infections but also in anti-tumor response. Hepatocellular carcinoma (HCC) represents an inflammation-related malignancy and NK cells are enriched in the liver, making them an essential component of the HCC immune microenvironment. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis to identify the NK cell marker genes (NKGs) and uncovered 80 prognosis-related ones by the TCGA-LIHC dataset. Based on prognostic NKGs, HCC patients were categorized into two subtypes with distinct clinical outcomes. Subsequently, we conducted LASSO-COX and stepwise regression analysis on prognostic NKGs to establish a five-gene (UBB, CIRBP, GZMH, NUDC, and NCL) prognostic signature-NKscore. Different mutation statuses of the two risk groups stratified by NKscore were comprehensively characterized. Besides, the established NKscore-integrated nomogram presented enhanced predictive performance. Single sample gene set enrichment analysis (ssGSEA) analysis was used to uncover the landscape of the tumor immune microenvironment (TIME) and the high-NKscore risk group was characterized with an immune-exhausted phenotype while the low-NKscore risk group held relatively strong anti-cancer immunity. T cell receptor (TCR) repertoire, tumor inflammation signature (TIS), and Immunophenoscore (IPS) analyses revealed differences in immunotherapy sensitivity between the two NKscore risk groups. Taken together, we developed a novel NK cell-related signature to predict the prognosis and immunotherapy efficacy for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Imunidade Inata , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Inflamação , Células Matadoras Naturais , Microambiente Tumoral , Proteínas de Ligação a RNA
20.
Anal Chim Acta ; 1249: 340947, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-36868774

RESUMO

Cell-enzyme-linked immunosorbent assay (CELISA) is extensively applied for cancer diagnosis and screening because of its simple operation, high sensitivity, and intuitive color change. However, the unstable horseradish peroxidase (HRP), hydrogen peroxide (H2O2) and non-specificity have led to a high false negative rate, which limits its application. In this study, we have developed an innovative immunoaffinity nanozyme aided CELISA based on anti-CD44 monoclonal antibodies (mAbs) bioconjugated manganese dioxide-modified magnetite nanoparticles (Fe3O4@MnO2 NPs) for the specific detection of triple-negative breast cancer MDA-MB-231 cells. The CD44FM nanozymes were fabricated to replace unstable HRP and H2O2 to counteract possible negative effects in conventional CELISA. Results suggested that CD44FM nanozymes displayed remarkable oxidase-like activities over an extensive pH and temperature range. The bioconjugation of CD44 mAbs enabled CD44FM nanozymes to enter MDA-MB-231 cells selectively via over-expressed CD44 antigens on the membrane surface of these cells, and then catalyzed oxidation of the chromogenic substrate TMB, further achieving specific detection of these cells. Additionally, this study exhibited high sensitivity and low detection limit for MDA-MB-231 cells with a quantitation range of just 186 cells. To sum up, this report developed a simple, specific and sensitive assay platform based on CD44FM nanozymes, which could provide a promising strategy for targeted diagnosis and screening of breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Oxirredutases , Receptores de Hialuronatos , Peróxido de Hidrogênio , Células MDA-MB-231 , Compostos de Manganês , Óxidos , Peroxidase do Rábano Silvestre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...