Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(26)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537284

RESUMO

Supercapacitors (SCs) have become one of the most popular energy-storage devices for high power density and fast charging/discharging capability. Polyaniline is a class of conductive polymer materials with ultra-high specific capacitance, and the excellent mechanical properties will play a key role in the research of flexible SCs. The synergistic effect between polyaniline and graphene is often used to overcome their respective inherent shortcomings, thus the high-performance polyaniline-graphene based nanocomposite electrode materials can be prepared. The development of graphene-polyaniline nanocomposites as electrode materials for SCs depends on their excellent microstructure design. However, it is still difficult to seek a balance between graphene performance and functionalization to improve the weak interfacial interaction between graphene and polyaniline. In this manuscript, the latest preparation methods, research progress and research results of graphene-polyaniline nanocomposites on SCs are reviewed, and the optimization of electrode structures and performances is discussed. Finally, the prospect of graphene-polyaniline composites is expected.

2.
Nanotechnology ; 35(1)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37797599

RESUMO

Fiber-shaped energy-storage devices for high energy and power density are crucial to power wearable electronics. In this work, reduced graphene oxide/carbon nanotubes/polypyrrole (GCP-op) cotton fabric with the optimal performance is prepared via a facile and cost-effective dipping-drying together with chemical polymerization approach. The structural characterizations confirm that the GCP-op cotton fabric has been successfully attached with numerous nanoparticles and carbon nanotubes, which can serve as a channel for electronical transfer. And GCP-op cotton fabric electrode displays admirable areal specific capacitance with 8397 mF cm-2at 1 mA cm-2. By combining GCP-op cathode with zinc anode, a GCP-op//PAM/ZnCl2//Zn flexible Zn-ion hybrid supercapacitor (FZHSC) is produced with 2 M polyacrylamide/ZnCl2(PAM/ZnCl2) hydrogel as the gel electrolyte. The FZHSC has superior cycle stability of 88.2%, outstanding energy density of up to 158µWh cm-2and power density at 0.5 mW cm-2. The remarkable performance proves that PPy-based material can provide more options for design and fabricate high energy flexible Zn-ion hybrid supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...