Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vivo ; 37(6): 2543-2554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905633

RESUMO

BACKGROUND/AIM: Chronic obstructive pulmonary disease (COPD) has become a prominent healthcare issue in recent years. Cigarette smoking (CS) and fine particulate matter (PM2.5) are important causative factors for COPD. This study assessed the aberrant lncRNA profiles in the tissue of rats with COPD caused by CS or PM2.5 Materials and Methods: A COPD rat model was developed using CS (CSM) or PM2.5 (PMM), and lung tissue RNA was extracted. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) were used to investigate the correlations between the distinct lncRNAs and mRNA pathways. A coding-non-coding gene co-expression network (CNC) was constructed by establishing connections between differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) associated with mitochondrial dysfunction and the inflammatory response. RESULTS: A quantitative real-time reverse transcription PCR (qRT-PCR) experiment was performed to verify the expression of the particular lncRNAs. Microarray analysis of lung tissue from the COPD model revealed that 123 and 444 lncRNAs were substantially raised and reduced in PMM vs. the control group (Ctrl), respectively, as were 621 and 1,178 mRNAs. Meanwhile, 81 and 340 lncRNAs were consistently raised and lowered in CSM vs. Ctrl, respectively, as were 408 and 931 mRNAs. GO enrichment and KEGG pathway analysis indicated that the COPD model was connected to inflammatory responses, mitochondrial dysfunction, and others. CONCLUSION: XR_340674, ENSRNOT00000089642, XR_597045, and XR_340651 were decreased, and XR_592469 was elevated. These lncRNAs were shown to be related to mitochondrial dysfunction in the lung tissue of animals exposed to CS or PM2.5.


Assuntos
Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , Ratos Wistar , Doença Pulmonar Obstrutiva Crônica/genética , Material Particulado , Mitocôndrias/genética , Mitocôndrias/metabolismo , Perfilação da Expressão Gênica
2.
Ann Transl Med ; 10(6): 277, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35433942

RESUMO

Background: This study sought to explore the underlying mechanism of long non-coding ribonucleic acid nuclear enriched abundant transcript 1 (NEAT1) and PTEN-induced kinase 1 (PINK1)-mediated mitophagy in chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS) or fine particular matter (PM2.5). Methods: In total, 30 male Wistar Rats were divided into the following 3 groups: (I) the COPD group exposed to CS (CSM); (II) the COPD group exposed to PM2.5 (PMM); and (III) the control (Ctrl) group. Pulmonary function, the enzyme-linked immunoassay analysis results, the histopathology results, and the ultrastructures of the lung tissues were examined in the 3 groups, and NEAT1 expression levels and the mitophagy-related protein PINK1, Parkin, LC3B, and p62 levels were assessed by quantitative reverse transcription PCR (RT-qPCR) and Western blotting. The A549 cells were transfected with small interfering ribonucleic acid (siRNA) targeting NEAT1, and subsequently stimulated with CS extract (CSE) and PM2.5 suspension (PMS). Mitochondrial dysfunction and enhanced mitophagy were observed, and the expression of the NEAT1/PINK1 pathway was assessed by RT-qPCR and Western blotting. Results: Both the CSM and PMM groups had a lower tidal volume (VT), minute ventilation (MV), and a higher respiratory rate (f) than the Ctrl group. The interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha levels in the serum and bronchoalveolar lavage fluid of the CSM and PMM groups were significantly increased. The histological examination results revealed airway remodeling, the formation of pulmonary bullae, and emphysema in the CSM and PMM groups. Subsequently, the ultrastructures of the lung tissues in the CSM and PMM groups showed mitochondrial swelling and autophagosomes. Additionally, NEAT1 expression, the level of the mitophagy-related protein PINK1, Parkin, and the ratio of LC3-II/I increased synchronously. Further, NEAT1 siRNA blocked PINK1 expression, inhibited mitochondrial dysfunctions, and mitophagy activation in the A549 cells exposed to CSE or PMS. Conclusions: Our results suggest that CS and PM2.5 exposure induce mitochondrial dysfunction, and the NEAT1/PINK1 pathway plays a critical role in the occurrence and development of COPD by regulating mitophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...