Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Vet Sci ; 158: 226-234, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37031471

RESUMO

Glaesserella parasuis (G. parasuis) is a part of the normal upper respiratory microbiota of healthy swine. In many studies, the serovars 1, 4, 5, and 12 of G. parasuis are considered to be highly virulent and its serovars 3, 6, 7, 9, and 11 are considered to be non-virulent. Until now, researchers have found that non-virulent strains of G. parasuis cause an increasing number of diseases. However, little is known concerning why non-virulent strains cause disease with the virulence changes. In present study, four G. parasuis strains were evaluated for their cytotoxicity property, which aims to compare their virulence. The results showed that highly virulent strains XX0306 and CY1201, as well as, non-virulent strains HLD0115 and YK1603 caused a series of pathological changes, increased lactate dehydrogenase (LDH) release, and decreased cell activity. In addition, compared to the control group, both highly and non-virulent strains showed similar trends, demonstrating that the method of classifying the virulence of G. parasuis based on its serovar is worth further deliberation. Hence, we investigated the adhesion capacity and invasion rate of G. parasuis, the results indicated that XX0306 and HLD0115 had the strongest adhesion and invasion ability, which contradicts the classification of the virulence of G. parasuis based on its serovar. The apoptosis degree induced by highly virulent strains was more intensive than non-virulent strains, as measured by annexin V and propidium iodide (PI) double staining. Through testing the expression of apoptosis-related genes Bcl-2 and Bax, we found highly virulent strains induced apoptosis by inhibiting the expression of Bcl-2.


Assuntos
Infecções por Haemophilus , Haemophilus parasuis , Doenças dos Suínos , Suínos , Animais , Virulência/genética , Infecções por Haemophilus/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/patologia , Sorogrupo , Haemophilus parasuis/genética , China/epidemiologia
2.
Microb Pathog ; 169: 105617, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680006

RESUMO

Glaesserella parasuis (G. parasuis) is the pathogen of Glässer's disease in pig herds, which can cause severe inflammatory responses. However, at present, the pathogenic mechanism of G. parasuis is not very clear. LncRNAs can regulate the expression of mRNA in a variety of ways, thereby causing host cells to produce a variety of functional changes in response to bacterial infection. Here, we detected the changes in lncRNAs and mRNAs of 3D4/21 cells after G. parasuis CY1201 strain (serotype 13) infection. A total of 876 lncRNAs and 2166 mRNAs were differentially expression in 3D4/21 cells after G. parasuis infection. GO and KEGG enrichment analysis showed that the differentially up-regulated lncRNA target genes were mainly involved in the response to extracellular stimuli, cell receptor signaling pathways and chemokine signaling pathways. The differentially down-regulated lncRNA target genes were mainly involved in ERK1/ERK2 cascade reaction and adhesion junctions. 44 lncRNAs were screened that might be related in inflammation. CeRNA regulatory network of the top five difference inflammation-related lncRNAs showed that the up-regulated lncRNA group involved 5 lncRNAs, 50 miRNAs and 49 mRNAs. Meanwhile, there were 26 miRNAs and 36 mRNAs in the top five down-regulated lncRNA group. Our results contribute to understand the basic role of lncRNAs in 3D4/21 cells during G. parasuis infection, and lay the foundation for following research.


Assuntos
Haemophilus parasuis , MicroRNAs , RNA Longo não Codificante , Animais , Redes Reguladoras de Genes , Haemophilus parasuis/genética , Inflamação/metabolismo , Pulmão , Macrófagos Alveolares/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Transcriptoma
3.
Curr Microbiol ; 78(8): 3152-3164, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191053

RESUMO

Haemophilus parasuis (H. parasuis, HPS) can elicit serious inflammatory responses and cause enormous economic loss to swine industry worldwide. However, the factors responsible for systemic infection and inflammatory responses of HPS have not yet been fully clarified. In this study, we found that lncRNA-MEG3 was significantly up-regulated in porcine alveolar macrophages (PAMs) infected with HPS. The gain- and loss-of-function analysis confirmed that lncRNA-MEG3 participated in the inflammatory responses and apoptosis in HPS-infected PAMs, which was assessed via several inflammatory cytokine genes (TNF-α, IL-1ß, and IL-6) and apoptotic factors (Bcl-2, Bax, and C-caspase-3). Based on biotin-labeled RNA pull-down assay, we found that lncRNA-MEG3 bound with miR-210 in HPS-infected PAMs. Based on both overexpression and knockdown analysis of lncRNA-MEG3, our results indicated that lncRNA-MEG3 promoted the expression of TLR4 in HPS-infected PAMs. Using dual-luciferase reporter assays, we showed that lncRNA-MEG3 positively regulated the expression of TLR4 gene in HPS-infected PAMs through miR-210 pathway. Taken together, our results indicated that lncRNA-MEG3 participated in the inflammatory responses and apoptosis in HPS-infected PAMs through modulating the miR-210/TLR4 axis. The results from this investigation provided significant information for a novel target to control HPS infection in swine.


Assuntos
Haemophilus parasuis , MicroRNAs , RNA Longo não Codificante , Animais , Apoptose , Haemophilus parasuis/genética , Macrófagos Alveolares , MicroRNAs/genética , RNA Longo não Codificante/genética , Suínos , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...