Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.226
Filtrar
1.
Chembiochem ; : e202400230, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825565

RESUMO

Several major viral pandemics in history have significantly impacted the public health of human beings. The COVID-19 pandemic has further underscored the critical need for early detection and screening of infected individuals. However, current detection techniques are confronted with deficiencies in sensitivity and accuracy, restricting the capability of detecting trace amounts of viruses in human bodies and in the environments.The advent of DNA nanotechnology has opened up a feasible solution for rapid and sensitive virus determination. By harnessing the designability and addressability of DNA nanostructures, a range of rapid virus sensing platforms have been proposed. This review overviewed the recent progress, application, and prospect of DNA nanotechnology-based rapid virus detection platforms. Furthermore, the challenges and developmental prospects in this field were discussed.

2.
Opt Lett ; 49(11): 3066-3069, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824329

RESUMO

We present a space-angle dual multiplexing holographic recording system for realizing single-exposure multi-wavelength optical diffraction tomographic (ODT) imaging. This system is achieved by combining the principle of single-exposure multi-wavelength holographic imaging technique based on angle-division multiplexing with the principle of single-exposure ODT imaging technique based on microlens array multi-angle illuminations and space-division multiplexing. Compared with the existing multi-wavelength ODT imaging methods, it enables the holographic recording of all the diffraction tomography information of a measured specimen at multiple illumination wavelengths in a single camera exposure without any scan mechanism. Using our proposed data processing method, the multi-wavelength three-dimensional (3D) refractive index tomograms of a specimen can be eventually reconstructed from single recorded multiplexing hologram. Experimental results of a static polystyrene bead and a living C. elegans worm demonstrate the feasibility of this system.

3.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833982

RESUMO

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.

4.
Int J Biol Macromol ; : 132963, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852725

RESUMO

Human chorionic gonadotropin (HCG), a vital protein for pregnancy determination and a marker for trophoblastic diseases, finds application in monitoring early pregnancy and ectopic pregnancy. This study presents an innovative approach employing electrochemical immunosensors for enhanced HCG detection, utilizing Anti-HCG antibodies and gold nanoparticles (AuNPs) in the sensor platform. Two sensor configurations were optimized: BSA/Anti-HCG/c-AuNPs/MEL/e-AuNPs/SPCE with [Fe(CN)6]3-/4- as a redox probe (1) and BSA/Anti-HCG/PPy/e-AuNPs/SPCE using polypyrrole (PPy) as a redox probe (2). The first sensor offers linear correlation in the 0.10-500.00 pg∙mL-1 HCG range, with a limit of detection (LOD) of 0.06 pg∙mL-1, sensitivity of 32.25 µA∙pg-1∙mL∙cm-2, RSD <2.47 %, and a recovery rate of 101.03-104.81 %. The second sensor widens the HCG detection range (40.00 fg∙mL-1-5.00 pg∙mL-1) with a LOD of 16.53 fg∙mL-1, ensuring precision (RSD <1.04 %) and a recovery range of 94.61-106.07 % in serum samples. These electrochemical immunosensors have transformative potential in biomarker detection, offering enhanced sensitivity, selectivity, and stability for advanced healthcare diagnostics.

5.
Microbiol Resour Announc ; : e0030624, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842340

RESUMO

Streptomyces sp. F41 is a potent insecticidal metabolite producing actinomycetes isolated from the topsoil, and the complete genome sequence was determined. The genome consists of 8,343,496 bp, with 7,221 genes and a GC content of 71.84%.

6.
J Asian Nat Prod Res ; : 1-6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860491

RESUMO

Three new flavonoids including two isoflavanones sophortones A and B (1 and 2), and one chalcone sophortone C (3) were isolated from the roots of Sophora tonkinensis. Their structures were established by UV, IR, HRESIMS, and NMR data. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) calculations.

7.
Sci Rep ; 14(1): 13248, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858433

RESUMO

Blood urea nitrogen (BUN) level is one of the commonly used indicators to assess renal function and systemic immune-inflammatory status. In the adolescent population, changes in BUN levels may be associated with a variety of factors, including physiologic dehydration, lifestyle influences such as nutritional intake, physical activity, and possible endocrine or metabolic disorders. In recent years, more and more studies have shown that BUN levels are not only a reflection of kidney function, but it may also be related to the inflammatory state of the body. The Systemic Immune Inflammatory Index (SII) is a comprehensive index that takes into account platelet counts, neutrophil and lymphocyte counts, and is thought to be effective in reflecting the body's immune status and inflammatory response. However, research on the relationship between the two, SII and BUN, remains understudied in the adolescent population. The purpose of this study was to examine the relationship between SII and BUN levels in a population of American adolescents and to further analyze the factors that influence it. We conducted a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) database. Using descriptive statistics, correlation analysis, and regression analysis, we explored the relationship between SII and BUN levels. We found a significant negative correlation between SII and BUN levels, with BUN levels decreasing when SII levels increased (BUN as the dependent variable and SII as the outcome variable). We performed a multiple regression analysis of this relationship, controlling for possible confounders such as gender, age, race, and BMI, and found that this negative correlation remained significant. Our findings reveal an important relationship between SII and BUN levels and provide new perspectives for understanding adolescent health.


Assuntos
Nitrogênio da Ureia Sanguínea , Inflamação , Inquéritos Nutricionais , Humanos , Adolescente , Feminino , Masculino , Estudos Transversais , Inflamação/sangue , Estados Unidos/epidemiologia
9.
Mol Ther ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734897

RESUMO

Altered branched chain amino acids (BCAAs), including leucine, isoleucine, and valine, are frequently observed in patients with advanced cancer. We evaluated the efficacy of chimeric antigen receptor (CAR) T cell-mediated cancer cell lysis potential in the immune microenvironment of BCAA supplementation and deletion. BCAA supplementation increased cancer cell killing percentage, while accelerating BCAA catabolism and decreasing BCAA transporter decreased cancer cell lysis efficacy. We thus designed BCKDK engineering CAR T cells for the reprogramming of BCAA metabolism in the tumor microenvironment based on the genotype and phenotype modification. BCKDK overexpression (OE) in CAR-T cells significantly improved cancer cell lysis, while BCKDK knockout (KO) resulted in inferior lysis potential. In an in vivo experiment, BCKDK-OE CAR-T cell treatment significantly prolonged the survival of mice bearing NALM6-GL cancer cells, with the differentiation of central memory cells and an increasing proportion of CAR-T cells in the peripheral circulation. BCKDK-KO CAR-T cell treatment resulted in shorter survival and a decreasing percentage of CAR-T cells in the peripheral circulation. In conclusion, BCKDK-engineered CAR-T cells exert a distinct phenotype for superior anticancer efficiency.

10.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712255

RESUMO

Recent technological developments have made it possible to map the spatial organization of a tissue at the single-cell resolution. However, computational methods for analyzing spatially continuous variations in tissue microenvironment are still lacking. Here we present ONTraC as a strategy that constructs niche trajectories using a graph neural network-based modeling framework. Our benchmark analysis shows that ONTraC performs more favorably than existing methods for reconstructing spatial trajectories. Applications of ONTraC to public spatial transcriptomics datasets successfully recapitulated the underlying anatomical structure, and further enabled detection of tissue microenvironment-dependent changes in gene regulatory networks and cell-cell interaction activities during embryonic development. Taken together, ONTraC provides a useful and generally applicable tool for the systematic characterization of the structural and functional organization of tissue microenvironments.

11.
Elife ; 122024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814697

RESUMO

Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100-1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.


Assuntos
Larva , Mariposas , Sensilas , Sacarose , Animais , Sacarose/metabolismo , Sacarose/farmacologia , Larva/fisiologia , Mariposas/fisiologia , Mariposas/efeitos dos fármacos , Sensilas/fisiologia , Sensilas/metabolismo , Paladar/fisiologia , Percepção Gustatória/fisiologia , Helicoverpa armigera
12.
Sci Rep ; 14(1): 12079, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802538

RESUMO

In order to propose a reliable method for assessing the safety condition for single-tower steel box girder Suspension bridges over the sea, a condition monitoring system is established by installing sensors on the bridge structure. The system is capable of gathering monitoring data that influence the safety status of the bridge. These include cable tension, load on the main tower and pylon, bearing displacement, wind direction, wind speed, and ambient temperature and humidity. Furthermore, an improved Analytic Hierarchy Process (AHP) algorithm is developed by integrating a hybrid triangular fuzzy number logic structure. This improvement, coupled with comprehensive fuzzy evaluation methods, improves the consistency, weight determination, and security evaluation capabilities of the AHP algorithm. Finally, taking the No.2 Channel Bridge as an example and based on the data collected by the health monitoring system, the application of the safety assessment method proposed in this paper provides favorable results in evaluating the overall safety status of the bridge in practical engineering applications. This provides a basis for management decisions by bridge maintenance departments. This project confirms that the research results can provide a reliable method for assessing the security status of relevant areas.

13.
Heliyon ; 10(10): e31546, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807894

RESUMO

Background: In recent years, research on exosomal miRNAs has provided new insights into exploring the mechanism of viral infection and disease prevention. This study aimed to investigate the serum exosomal miRNA expression profile of dengue-infected individuals through a community survey of dengue virus (DENV) infection. Methods: A seroprevalence study of 1253 healthy persons was first conducted to ascertain the DENV infection status in Baiyun District, Guangzhou. A total of 18 serum samples, including 6 healthy controls (HC), 6 asymptomatic DENV infections (AsymptDI), and 6 confirmed dengue fever patients (AcuteDI), were collected for exosome isolation and then sRNA sequencing. Through bioinformatics analysis, we discovered distinct serum exosomal miRNA profiles among the different groups and identified differentially expressed miRNAs (DEMs). These findings were further validated by qRT-PCR. Results: The community survey of DENV infection indicated that the DENV IgG antibody positivity rate among the population was 11.97 % in the study area, with asymptomatic infected individuals accounting for 93.06 % of the anti-DENV IgG positives. The age and Guangzhou household registration were associated with DENV IgG antibody positivity by logistic regression analysis. Distinct miRNA profiles were observed between healthy individuals and DENV infections. A total of 1854 miRNAs were identified in 18 serum exosome samples from the initial analysis of the sequencing data. Comparative analysis revealed 23 DEMs comprising 5 upregulated and 18 downregulated miRNAs in the DENV-infected group (mergedDI). In comparison to AcuteDI, 18 upregulated miRNAs were identified in AsymptDI. Moreover, functional enrichment of the predicted target genes of DEMs indicated that these miRNAs were involved in biological processes and pathways related to cell adhesion, focal adhesion, endocytosis, and ECM-receptor interaction. Eight DEMs were validated by qRT-PCR. Conclusion: The Baiyun District of Guangzhou exhibits a notable proportion of asymptomatic DENV infections as suggested in other research, highlighting the need for enhanced monitoring and screening of asymptomatic persons and the elderly. Differential miRNA expression among healthy, symptomatic and asymptomatic DENV-infected individuals suggests their potential as biomarkers for distinguishing DENV infection and offers new avenues of investigating the mechanisms underlying DENV asymptomatic infections.

14.
Phytomedicine ; 130: 155580, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38810558

RESUMO

BACKGROUND: Macrophages exhibit different phenotypes in inflammatory bowel disease (IBD) and promote inflammation or tissue repair depending on their polarization state. Alcohol is a widely used solvent in pharmaceutical formulations, and its consumption is associated with an increased risk of colitis; however, its effects on macrophages in IBD remain poorly understood. PURPOSE: This study aimed to investigate the effect of alcohol on macrophages in dextran sodium sulfate (DSS)-induced colitis and understand the underlying mechanisms. METHODS: DSS-treated C57BL/6 mice were exposed to varying concentrations of alcohol, transient receptor potential vanilloid 1 (TRPV1) antagonist, and 5-aminosalicylic acid. The distal colon was resected, fixed, stained, and histologically analyzed, through hematoxylin and eosin (H&E) staining and immunofluorescence staining. Ratio [Ca2+]i measurements, western blotting, quantitative polymerase chain reaction, cytokine measurements, and RNA sequencing analyses were also performed. Peritoneal macrophages and RAW264.7 cells were used for in vitro experiments, and various assays were performed to evaluate cellular responses, gene expression, and signaling pathways. RESULTS: Alcohol exacerbated DSS-treated mice colitis and promoted the secretion of various inflammatory cytokines from colonic macrophages. Alcohol enhances the calcium ion influx induced by lipopolysaccharide (LPS) in peritoneal macrophages, while the TRPV1 antagonist capsazepine (CPZ) inhibits LPS- and/or alcohol- induced calcium influx in macrophages. Alcohol and LPS activate the MAPK/P38, MAPK/ERK, and NF-κB signaling pathways and induce the macrophage M2b polarization, resulting in the increased expression level of inflammatory cytokines such as Tnf, Il1b, and Il10. Additionally, CPZ can inhibit the facilitatory effects of alcohol or LPS on the abovementioned pathways and inflammatory factors, reversing macrophage M2b polarization and promoting alcohol-induced colitis. The inhibition of nucleotide binding oligomerization domain containing 2 (NOD2) partially suppressed the alcohol and LPS effects on macrophages. CONCLUSION: Alcohol exacerbates experimental colitis and induces M2b polarization of macrophage via TRPV1-MAPK/NF-κB. Our study provides new insights into the potential therapeutic targets for IBD treatment by elucidating the role of TRPV1 in alcohol-exacerbated colitis, using CPZ as a potential therapeutic option. The identification of transient receptor potential ankyrin subtype 1 (TRPA1) as a therapeutic target expands the scope of future research.

15.
Brain Res Bull ; 212: 110969, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705540

RESUMO

Alzheimer's disease (AD) stands as the most prevalent neurodegenerative condition worldwide, and its correlation with microglial function is notably significant. Dl-3-n-butylphthalide (NBP), derived from the seeds of Apium graveolens L. (Chinese celery), has demonstrated the capacity to diminish Aß levels in the brain tissue of Alzheimer's transgenic mice. Despite this, its connection to neuroinflammation and microglial phagocytosis, along with the specific molecular mechanism involved, remains undefined. In this study, NBP treatment exhibited a substantial improvement in learning deficits observed in AD transgenic mice (APP/PS1 transgenic mice). Furthermore, NBP treatment significantly mitigated the total cerebral Aß plaque deposition. This effect was attributed to the heightened presence of activated microglia surrounding Aß plaques and an increase in microglial phagocytosis of Aß plaques. Transcriptome sequencing analysis unveiled the potential involvement of the AGE (advanced glycation end products) -RAGE (receptor for AGE) signaling pathway in NBP's impact on APP/PS1 mice. Subsequent investigation disclosed a reduction in the secretion of AGEs, RAGE, and proinflammatory factors within the hippocampus and cortex of NBP-treated APP/PS1 mice. In summary, NBP alleviates cognitive impairment by augmenting the number of activated microglia around Aß plaques and ameliorating AGE-RAGE-mediated neuroinflammation. These findings underscore the related mechanism of the crucial neuroprotective roles of microglial phagocytosis and anti-inflammation in NBP treatment for AD, offering a potential therapeutic target for the disease.


Assuntos
Doença de Alzheimer , Benzofuranos , Camundongos Transgênicos , Microglia , Fagocitose , Receptor para Produtos Finais de Glicação Avançada , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Benzofuranos/farmacologia , Camundongos , Fagocitose/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Presenilina-1/genética , Presenilina-1/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo
16.
BMC Bioinformatics ; 25(1): 164, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664601

RESUMO

Multimodal integration combines information from different sources or modalities to gain a more comprehensive understanding of a phenomenon. The challenges in multi-omics data analysis lie in the complexity, high dimensionality, and heterogeneity of the data, which demands sophisticated computational tools and visualization methods for proper interpretation and visualization of multi-omics data. In this paper, we propose a novel method, termed Orthogonal Multimodality Integration and Clustering (OMIC), for analyzing CITE-seq. Our approach enables researchers to integrate multiple sources of information while accounting for the dependence among them. We demonstrate the effectiveness of our approach using CITE-seq data sets for cell clustering. Our results show that our approach outperforms existing methods in terms of accuracy, computational efficiency, and interpretability. We conclude that our proposed OMIC method provides a powerful tool for multimodal data analysis that greatly improves the feasibility and reliability of integrated data.


Assuntos
Análise de Célula Única , Análise por Conglomerados , Análise de Célula Única/métodos , Biologia Computacional/métodos , Humanos , Algoritmos
17.
Am J Physiol Endocrinol Metab ; 326(5): E696-E708, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568151

RESUMO

Glycogen is a form of energy storage for glucose in different tissues such as liver and skeletal muscle. It remains incompletely understood how glycogen impacts on adipose tissue functionality. Cold exposure elevated the expression of Gys1 that encodes glycogen synthase 1 in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT). The in vivo function of Gys1 was analyzed using a mouse model in which Gys1 was deleted specifically in adipose tissues. Under normal chow conditions, Gys1 deletion caused little changes to body weight and glucose metabolism. Deletion of Gys1 abrogated upregulation of UCP1 and other thermogenesis-related genes in iWAT upon prolonged cold exposure or treatment with ß3-adrenergic receptor agonist CL-316,243. Stimulation of UCP1 by CL-316,243 in adipose-derived stromal cells (stromal vascular fractions, SVFs) was also reduced by Gys1 deletion. Both the basal glycogen content and CL-316,243-stimulated glycogen accumulation in adipose tissues were reduced by Gys1 deletion. High-fat diet-induced obesity and insulin resistance were aggravated in Gys1-deleted mice. The loss of body weight upon CL-316,243 treatment was also abrogated by the loss of Gys1. In conclusion, our results underscore the pivotal role of glycogen synthesis in adaptive thermogenesis in beige adipose tissue and its impact on diet-induced obesity in mice.NEW & NOTEWORTHY Glycogen is one of major types of fuel reserve in the body and its classical function is to maintain blood glucose level. This study uncovers that glycogen synthesis is required for beige fat tissue to generate heat upon cold exposure. Such a function of glycogen is linked to development of high-fat diet-induced obesity, thus extending our understanding about the physiological functions of glycogen.


Assuntos
Tecido Adiposo Bege , Dieta Hiperlipídica , Glicogênio , Obesidade , Termogênese , Animais , Termogênese/genética , Termogênese/fisiologia , Camundongos , Obesidade/metabolismo , Obesidade/genética , Tecido Adiposo Bege/metabolismo , Glicogênio/metabolismo , Glicogênio/biossíntese , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Sintase/genética , Temperatura Baixa , Adaptação Fisiológica , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
18.
Int J Biol Macromol ; 269(Pt 1): 131846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663702

RESUMO

To improve the compatibility of gelatin (GA) and hydroxypropyl methylcellulose (HPMC), we investigated the effects of zein-pectin composite particles (ZCPs) with various zein/pectin ratios (1:0, 1:0.5, 1:1, 1:1.5, and 1:2) on the physical stability, microstructure, and rheological properties of the GA/HPMC water-water systems. With increasing pectin ratio, the particle size of the composite particles increased from 234.53 ± 1.48 nm to 1111.00 ± 26.91 nm, and their zeta potential decreased from 20.60 mV to below -34.77 mV. Macroscopic and microstructure observations indicated that pectin-modified ZCPs could effectively inhibit phase separation behavior between GA and HPMC. Compared to pure HPMC, the GA/HPMC water-water systems possessed a higher viscosity and dynamic modulus at room temperatures but lower gel temperatures (reduction of about 11 %). The viscosity and modulus of the water-water systems increased with increasing pectin ratio in ZCPs. However, the ratio had no impact on the gel-sol (sol-gel) transition temperatures (not statistically significant (P < 0.05)). This study may serve as a reference for advancing the processability of HPMC.


Assuntos
Gelatina , Derivados da Hipromelose , Pectinas , Reologia , Água , Zeína , Pectinas/química , Gelatina/química , Derivados da Hipromelose/química , Zeína/química , Água/química , Viscosidade , Tamanho da Partícula
19.
Sci Rep ; 14(1): 8627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622182

RESUMO

A bridge disease identification approach based on an enhanced YOLO v3 algorithm is suggested to increase the accuracy of apparent disease detection of concrete bridges under complex backgrounds. First, the YOLO v3 network structure is enhanced to better accommodate the dense distribution and large variation of disease scale characteristics, and the detection layer incorporates the squeeze and excitation (SE) networks attention mechanism module and spatial pyramid pooling module to strengthen the semantic feature extraction ability. Secondly, CIoU with better localization ability is selected as the loss function for training. Finally, the K-means algorithm is used for anchor frame clustering on the bridge surface disease defects dataset. 1363 datasets containing exposed reinforcement, spalling, and water erosion damage of bridges are produced, and network training is done after manual labelling and data improvement in order to test the efficacy of the algorithm described in this paper. According to the trial results, the YOLO v3 model has enhanced more than the original model in terms of precision rate, recall rate, Average Precision (AP), and other indicators. Its overall mean Average Precision (mAP) value has also grown by 5.5%. With the RTX2080Ti graphics card, the detection frame rate increases to 84 Frames Per Second, enabling more precise and real-time bridge illness detection.

20.
J Pain Res ; 17: 1531-1545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682106

RESUMO

Background: Ionomics is used to study levels of ionome in different states of organisms and their correlations. Bone cancer pain (BCP) severely reduces quality of life of patients or their lifespan. However, the relationship between BCP and ionome remains unclear. Methods: The BCP rat model was constructed through inoculation of Walker 256 cells into the left tibia. Von Frey test, whole-cell patch-clamp recording and inductively coupled plasma mass spectrometry (ICP-MS) technologies were conducted for measuring tactile hypersensitivity, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) of neurons of spinal slices, and ionome of spinal cord samples, respectively. Principal component analysis (PCA) was used to explore ionomic patterns of the spinal cord. Results: The BCP rat model was successfully constructed through implantation of Walker 256 cells into the left tibia. The frequency and amplitude of mEPSCs of neurons in the spinal cord slices from the BCP model rats were notably greater than those in the sham control. In terms of ionomics, the spinal cord levels of two macroelements (Ca and S), four microelements (Fe, Mn, Li and Sr) and the toxic element Ti in the BCP group of rats were significantly increased by inoculation of Walker 256 cancer cells, compared to the sham control. In addition, the correlation patterns between the elements were greatly changed between the sham control and BCP groups. PCA showed that inoculation of Walker 256 cells into the tibia altered the overall ionomic profiles of the spinal cord. There was a significant separation trend between the two groups. Conclusion: Taken together, inoculation of Walker 256 cells into the left tibia contributes to BCP, which could be closely correlated by some elements. The findings provided novel information on the relationship between the ionome and BCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...