Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
ACS Omega ; 8(35): 32053-32059, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692240

RESUMO

There have been significant advances in the development of vaccines for the prevention of various infectious diseases in the last few decades. These vaccines are mainly composed of proteins and nucleic acids. Poor handling and storage, exposure to high temperatures that lead to enzymatic degradation, pH variation, and various other stresses can denature the proteins or nucleic acids present in any vaccine formulation. Therefore, it is necessary to maintain a proper environment to preserve the integrity of biospecimens. To overcome these challenges, we report a practical and user-friendly approach for sol-gels called "BioCaRGOS" that can stabilize heme proteins not only in the presence of degrading enzymes and acidic pH but simultaneously maintain stability at room temperature. Heme proteins, such as myoglobin and cytochrome c, have been used for this study.

2.
RSC Adv ; 12(45): 29399-29404, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320771

RESUMO

Previously, our group had demonstrated long term stabilization of protein biomarkers using BioCaRGOS, a silica sol-gel technology. Herein, we describe workflow modifications to allow for extraction of cell free DNA (cfDNA) from primary samples containing working concentrations of BioCaRGOS, as well as the compatibility of BioCaRGOS with droplet digital PCR (ddPCR) analysis for pancreatic cancer biomarkers i.e., KRAS circulating tumor DNA (ctDNA). Preliminary attempts to extract ctDNA from BioCaRGOS containing samples demonstrated interference in the extraction of primary samples and the interference with ddPCR analysis when BioCaRGOS was directly introduced to stabilize sample extracts. In our modified technique, we have minimized the interference caused by methanol with ddPCR by complete removal of methanol from the activated BioCaRGOS formulation prior to addition to the biospecimen or ctDNA extract. Interference of the silica matrix present in BioCaRGOS with ctDNA extraction was eliminated through the introduction of invert filtration of the sample prior to extraction. These modifications to the workflow of BioCaRGOS containing samples allow for use of BioCaRGOS for stabilization of trace quantities of nucleic acid biomarkers such as plasma ctDNA, while retaining the capability to extract the biomarker and quantify based on ddPCR.

3.
Emergent Mater ; 5(2): 307-314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33778372

RESUMO

Long-term stabilization of DNA is needed for forensic, clinical, in-field operations and numerous other applications. Although freezing (<-20 °C) and dry storage are currently the preferential methods for long-term storage, a noticeable pre-analytical degradation of DNA over time, upfront capital investment and recurring costs have demonstrated a need for an alternative long-term room-temperature preservation method. Herein, we report a novel, fast (~5 min) silica sol-gel preparation method using a standard microwave-initiated polymerization reaction amenable to stabilization of DNA. The method involves use of one chemical, tetramethoxy silane (TMOS) and eliminates the use of alcohol as co-solvent and catalysts such as acids. In addition, the process involves minimal technical expertise, thus making it an ideal choice for resource-challenged countries and in-field applications. The sol-gel is capable to store and stabilize Escherichia coli DNA in ambient conditions for 210 days. DNA recovered from the sol-gel showed no significant nucleolytic and/or oxidative degradation, outperforming conventional storage conditions at -20 °C, and reported state-of-the-art technology. Supplementary Information: The online version contains supplementary material available at 10.1007/s42247-021-00208-3.

4.
RSC Adv ; 11(22): 13034-13039, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35423878

RESUMO

Room temperature biospecimen storage for prolonged periods is essential to eliminate energy consumption by ultra-low freezing or refrigeration-based storage techniques. State of the art practices that sufficiently minimize the direct or hidden costs associated with cold-chain logistics include ambient temperature storage of biospecimens (i.e., DNA, RNA, proteins, lipids) in the dry state. However, the biospecimens are still well-exposed to the stress associated with drying and reconstitution cycles, which augments the pre-analytical degradation of biospecimens prior to their downstream processing. An aqueous storage solution that can eliminate these stresses which are correlated to several cycles of drying/rehydration or freezing of biospecimens, is yet to be achieved by any current technology. In our study, we have addressed this room temperature biospecimen-protection challenge using aqueous capture and release gels for optimized storage (Bio-CaRGOS) of biospecimens. Herein, we have demonstrated a single-step ∼95% recovery of a metalloprotein hemoglobin at room temperature using a cost-effective standard microwave-based aqueous formulation of Bio-CaRGOS. Although hemoglobin samples are currently stored at sub-zero or under refrigeration (4 °C) conditions to avoid loss of integrity and an unpredictable diagnosis during their downstream assays, our results have displayed an unprecedented room temperature integrity preservation of hemoglobin. Bio-CaRGOS formulations efficiently preserve hemoglobin in its native state, with single-step protein recovery of ∼95% at ambient conditions (1 month) and ∼96% (7 months) under refrigeration conditions. In contrast, two-thirds of the control samples degrade under ambient (1 month) and refrigeration (7 months) settings.

5.
RSC Adv ; 11(50): 31505-31510, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496857

RESUMO

Storage of biospecimens in their near native environment at room temperature can have a transformative global impact, however, this remains an arduous challenge to date due to the rapid degradation of biospecimens over time. Currently, most isolated biospecimens are refrigerated for short-term storage and frozen (-20 °C, -80 °C, liquid nitrogen) for long-term storage. Recent advances in room temperature storage of purified biomolecules utilize anhydrobiosis. However, a near aqueous storage solution that can preserve the biospecimen nearly "as is" has not yet been achieved by any current technology. Here, we demonstrate an aqueous silica sol-gel matrix for optimized storage of biospecimens. Our technique is facile, reproducible, and has previously demonstrated stabilization of DNA and proteins, within a few minutes using a standard benchtop microwave. Herein, we demonstrate complete integrity of miRNA 21, a highly sensitive molecule at 4, 25, and 40 °C over a period of ∼3 months. In contrast, the control samples completely degrade in less than 1 week. We attribute excellent stability to entrapment of miRNA within silica-gel matrices.

6.
ACS Appl Mater Interfaces ; 12(38): 42678-42685, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32840099

RESUMO

Precious group metal (PGM) catalysts such as Pt supported on carbon supports are expensive catalysts utilized for the oxygen reduction reaction (ORR) due to their unmatched catalytic activity and durability. As an alternative, PGM-free ORR electrocatalysts that offer respectable catalytic activity are being pursued. Most of the notable PGM-free catalysts are obtained either from a bottom-up approach synthesis utilizing nitrogen-rich polymers as building blocks, or from a top down approach, where nitrogen and metal moieties are incorporated to carbonaceous matrixes. The systematic understanding of the origin of catalytic activity for either case is speculative and currently employed synthesis techniques typically generate large amounts of hazardous waste such as acids, oxidizing agents, and solvents. Herein, for the first time, we investigate the catalytic activity of graphite-based materials obtained via intercalation strategies that minimally perturb the graphitic backbone. Our outlined approaches demonstrate initial efforts to not only elucidate the role of each element but also significantly reduce the use of hazardous chemicals, which remains a pressing challenge. Graphite intercalation compounds (GIC) were obtained using fewer steps and solvent-free processes. X-ray diffraction and Raman results confirm the successful intercalation of FeCl3 between graphite layers. Electrochemical data shows that the ORR performance of FeCl3-intercalated GIC displays slight improvement where the onset potential reaches 0.77 V vs RHE in alkaline environments. However, expansion of the graphite and solvent-free incorporation of iron and nitrogen moieties resulted in a significant increase in ORR activity with onset potential to 0.89 V vs RHE, a maximum half-wave of 0.72 V vs RHE, and a limiting current of about 2.5 mA cm-2. We anticipate that the use of near solvent-free processes that result in a high yield of catalysts along with the fundamental insight into the origin of electrochemical activity will tremendously impact the methodologies for developing next-generation ORR catalysts.

7.
Inorg Chem ; 58(18): 12025-12039, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31479262

RESUMO

A series of crystalline nickel(II) complexes (1-3) based on inexpensive bis(thiosemicarbazone) ligands diacetylbis(4-methyl-3-thiosemicarbazone) (H2ATSM), diacetylbis(4,4-dimethyl-3-thiosemicarbazone) (H2ATSDM), and diacetylbis[4-(2,2,2-trifluoroethyl)-3-thiosemicarbazone] (H2ATSM-F6) were synthesized and characterized by single-crystal X-ray diffraction and NMR, UV-visible, and Fourier transform infrared spectroscopies. Modified electrodes GC-1-GC-3 were prepared with films of 1-3 deposited on glassy carbon and evaluated as potential hydrogen evolution reaction (HER) catalysts. HER studies in 0.5 M aqueous H2SO4 (10 mA cm-2) revealed dramatic shifts in the overpotential from 0.740 to 0.450 V after extended cycling for 1 and 2. The charge-transfer resistances for GC-1-GC-3 were determined to be 270, 160, and 630 Ω, respectively. Characterization of the modified surfaces for GC-1 and GC-2 by scanning electron microscopy and Raman spectroscopy revealed similar crystalline coatings before HER that changed to surface-modified crystallites after conditioning. The surface of GC-3 had an initial glasslike appearance before HER that delaminated after HER. The differences in the surface morphology and the effect of conditioning are correlated with crystal-packing effects. Complexes 1 and 2 pack as columns of interacting complexes in the crystallographic a direction with short interplanar spacings between 3.37 and 3.54 Å. Complex 3 packs as columns of isolated molecules in the crystallographic b direction with long-range interplanar spacings of 9.40 Å.

8.
Nanotechnology ; 30(17): 175401, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30654351

RESUMO

We have demonstrated a simple and scalable fabrication process for defect-rich MoS2 directly from ammonium tetrathiomolybdate precursor using intense pulse light treatment in milliseconds durations. The formation of MoS2 from the precursor film after intense pulsed light exposure was confirmed with XPS, XRD, electron microscopy and Raman spectroscopy. The resulting material exhibited high activity for the hydrogen evolution reaction (HER) in acidic media, requiring merely 200 mV overpotential to reach a current density of 10 mA cm-2. Additionally, the catalyst remained highly active for HER over extended durability testing with the overpotential increasing by 28 mV following 1000 cycles. The roll-to-roll amenable fabrication of this highly-active material could be adapted for mass production of electrodes comprised of earth-abundant materials for water splitting applications.

9.
Natl J Maxillofac Surg ; 9(1): 56-60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937660

RESUMO

BACKGROUND: Head and neck cancers constitute about 5%-8% of total body cancers in Europe, America, but in India, this figure is somewhat higher. The aim of this study is to evaluate the current burden of oral cancers in India, particularly North-East India. MATERIALS AND METHODS: A full-length study starting from patient counseling to clinical and histopathological examination and grading was planned. The study was conducted under the guidance of clinician, oral surgeon, oral pathologists, and statistician. RESULTS: In the 3 years study, all the patients with oral lesions are examined clinically, out of them suspected oral cancer patients were histopathologically confirmed as oral squamous cell carcinoma patient. The socioeconomic profile of oral cancer patients in relation to all examined patients was summarized, and results are drawn. CONCLUSION: The studied population is heavily indulgent tobacco consumption. Education for cancer prevention, early detection, and treatment is needed.

10.
Adv Mater ; 29(42)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28940336

RESUMO

Here, the hydrogen evolution reaction (HER) activities at the edge and basal-plane sites of monolayer molybdenum disulfide (MoS2 ) synthesized by chemical vapor deposition (CVD) are studied using a local probe method enabled by selected-area lithography. Reaction windows are opened by e-beam lithography at sites of interest on poly(methyl methacrylate) (PMMA)-covered monolayer MoS2 triangles. The HER properties of MoS2 edge sites are obtained by subtraction of the activity of the basal-plane sites from results containing both basal-plane and edge sites. The catalytic performances in terms of turnover frequencies (TOFs) are calculated based on the estimated number of active sites on the selected areas. The TOFs follow a descending order of 3.8 ± 1.6, 1.6 ± 1.2, 0.008 ± 0.002, and 1.9 ± 0.8 × 10-4 s-1 , found for 1T'-, 2H-MoS2 edges, and 1T'-, 2H-MoS2 basal planes, respectively. Edge sites of both 2H- and 1T'-MoS2 are proved to have comparable activities to platinum (≈1-10 s-1 ). When fitted into the HER volcano plot, the MoS2 active sites follow a trend distinct from conventional metals, implying a possible difference in the reaction mechanism between transition-metal dichalcogenides (TMDs) and metal catalysts.

11.
ACS Nano ; 11(8): 8223-8230, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28723073

RESUMO

The values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe2, WS2, and MoS2) on SiO2 using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS2, to WS2, to MoSe2, in agreement with predictions of density functional theory calculations. Combined with the measured energy positions of the valence band edge at the Brillouin zone center, we deduce that, in the absence of interlayer coupling, a vertical heterojunction comprising any of the three TMD monolayers would form a staggered (type-II) band alignment. This band alignment could give rise to long-lived interlayer excitons that are potentially useful for valleytronics or efficient electron-hole separation in photovoltaics.

12.
Sci Rep ; 7(1): 1174, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446782

RESUMO

In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation. Specific capacitance of 408 F/g at 1 mV/s using CV and 185 F/g at 500 mA/g using charge-discharge measurements with excellent flexibility (~100% retention in charge storage capacity on bending) were observed. The cyclic stability test confirmed no loss in the charge storage capacity of the electrode even after 5,000 charge-discharge measurements. In addition, a supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 °C. Based on these results, we propose that recycled jute should be considered for fabrication of high-performance flexible energy storage devices at extremely low cost.

13.
Asian J Transfus Sci ; 11(1): 40-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316439

RESUMO

BACKGROUND AND OBJECTIVES: The US Food and Drug Administration and American Association of Blood Banks approved the type and screen approach in 1980s, long after antibody screen (AS) was introduced in 1950s. The present study omits conventional anti-human globulin (AHG) crossmatch and replaces it with immediate-spin (IS) crossmatch as part of pretransfusion testing in AS-negative patients to study the safety and effectiveness of IS crossmatch in recipients. MATERIALS AND METHODS: This prospective longitudinal study was conducted on over 5000 red cell units transfused to AS-negative patients admitted to the hospital. Pretransfusion testing comprised blood grouping and AS followed by IS crossmatch, at the time of issue of red cell unit. The patients were transfused IS compatible red cell units. AHG crossmatch was performed posttransfusion for all red cell units. Any incompatible AHG crossmatch was followed up as suspected transfusion reaction. RESULTS: A total of 5023 red cell units were transfused to 2402 patients with negative AS. 99.7% IS compatible red cell units were also compatible on posttransfusion AHG crossmatch. Anti-P1 alloantibody was identified in one patient who was transfused two IS crossmatch compatible units but later both units were incompatible on AHG crossmatch. There was no clinical or serological sign of hemolysis in the patient. CONCLUSION: In AS-negative patients, IS crossmatch is as safe as conventional AHG crossmatch and can, therefore, replace conventional AHG crossmatch protocol.

14.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27869345

RESUMO

Integration of organic/inorganic hybrid perovskites with metallic or semiconducting phases of 2D MoS2 nanosheets via solution processing is demonstrated. The results show that the collection of charge carriers is strongly dependent on the electronic properties of the 2D MoS2 with metallic MoS2 showing high responsivity and the semiconducting phase exhibiting high on/off ratios.

15.
ACS Nano ; 10(12): 10808-10815, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27966903

RESUMO

A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFO may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFO|C60 and C60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C60-only devices. In addition, with a relatively higher contribution to photocurrent from the PFO-C60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. These results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells.

16.
Nanoscale ; 8(44): 18675-18681, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27714095

RESUMO

Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. Recently, 2D/2D heterostructures have opened up new research areas. However, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here we report a novel heterostructure composed of Ge and monolayer MoS2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS2. The electrical characteristics of Ge and MoS2 in the Ge/MoS2 heterostructure were remarkably different from those of isolated Ge and MoS2. The field-effect conductivity type of the monolayer MoS2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.

17.
Nature ; 536(7616): 312-6, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27383783

RESUMO

Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a single­junction solar cell (33.5 per cent). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions. In contrast to their three-dimensional counterparts, Ruddlesden-Popper phases--layered two-dimensional perovskite films--have shown promising stability, but poor efficiency at only 4.73 per cent. This relatively poor efficiency is attributed to the inhibition of out-of-plane charge transport by the organic cations, which act like insulating spacing layers between the conducting inorganic slabs. Here we overcome this issue in layered perovskites by producing thin films of near-single-crystalline quality, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport. We report a photovoltaic efficiency of 12.52 per cent with no hysteresis, and the devices exhibit greatly improved stability in comparison to their three-dimensional counterparts when subjected to light, humidity and heat stress tests. Unencapsulated two-dimensional perovskite devices retain over 60 per cent of their efficiency for over 2,250 hours under constant, standard (AM1.5G) illumination, and exhibit greater tolerance to 65 per cent relative humidity than do three-dimensional equivalents. When the devices are encapsulated, the layered devices do not show any degradation under constant AM1.5G illumination or humidity. We anticipate that these results will lead to the growth of single-crystalline, solution-processed, layered, hybrid, perovskite thin films, which are essential for high-performance opto-electronic devices with technologically relevant long-term stability.

18.
Biosens Bioelectron ; 86: 459-465, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27424264

RESUMO

For the first time, a paper based enzymatic fuel cell is used as self-recharged supercapacitor. In this supercapacitive enzymatic fuel cell (SC-EFC), the supercapacitive features of the electrodes are exploited to demonstrate high power output under pulse operation. Glucose dehydrogenase-based anode and bilirubin oxidase-based cathode were assembled to a quasi-2D capillary-driven microfluidic system. Capillary flow guarantees the continuous supply of glucose, cofactor and electrolytes to the anodic enzyme and the gas-diffusional cathode design provides the passive supply of oxygen to the catalytic layer of the electrode. The paper-based cell was self-recharged under rest and discharged by high current pulses up to 4mAcm(-2). The supercapacitive behavior and low equivalent series resistance of the cell permitted to achieve up to a maximum power of 0.87mWcm(-2) (10.6mW) for pulses of 0.01s at 4mAcm(-2). This operation mode allowed the system to achieve at least one order of magnitude higher current/power generation compared to the steady state operation.


Assuntos
Fontes de Energia Bioelétrica , Capacitância Elétrica , Dispositivos Lab-On-A-Chip , Papel , Catálise , Eletrodos , Desenho de Equipamento , Glucose/metabolismo , Glucose 1-Desidrogenase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
19.
Nat Commun ; 7: 11857, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282871

RESUMO

Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

20.
Nat Mater ; 15(9): 1003-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27295098

RESUMO

The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...