Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140831, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040251

RESUMO

Effective water treatment to remove antibiotics and its activity from contaminated water is urgently needed to prevent antibiotic-resistant bacteria (ARB) emergence. In this study, we investigated degradation of Ampicillin (AMP), an extensively used ß-lactam antibiotic, using submersible Ultraviolet C Light Emitting Diode (λmax = 276 nm) irradiation source, and Persulfate (UVC LED/PS system). Pseudo first order rate constant (kobs) for degradation of AMP (1 ppm) by UVC LED/PS system was determined to be 0.5133 min-1 (PS = 0.2 mM). kobs value at pH 2.5 (0.7259 min-1) was found to be higher than pH 6.5 (0.5133 min-1) and pH 12 (0.1745 min-1). kobs value for degradation of AMP in deionized water spiked with inorganic anions (Cl-=0.5369 min-1,SO42-=0.4545 min-1, NO3-=0.1526 min-1, HCO3-=0.0226 min-1), in real tap water (0.1182 min-1) and simulated ground water (0.0372 min-1) were presented. Radical scavenging experiment reveal involvement of sulfate radical anion and hydroxyl radical in UVC LED/PS system. EPR analysis confirms the generation of sulfate radical anion and hydroxyl radical. Importantly, 74% reduction of total organic carbon (TOC) occurred within 60 min of AMP treatment by UVC LED/PS system. Seven degradation by-products were identified by high resolution mass spectrometry, and degradation pathways were proposed. Antibacterial activity of AMP towards Bacillus subtilis and Staphylococcus aureus was completely removed after UVC LED/PS treatment. ECOSAR model predicted no very toxic degradation by-products generation by UVC LED/PS system. Electrical Energy per order (EEo) and cost of UVC LED/PS system were determined to be 0.9351 kW/m3/order and ₹ 7.91/m3 ($ 0.095/m3 or € 0.087/m3), respectively. Overall, this study highlights, UVC LED/PS system as energy efficient, low-cost, and its potential to emerge as sulfate radical anion based advanced oxidation process (AOP) to treat water with antibiotics.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos/farmacologia , Radical Hidroxila , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Sulfatos/química , Cinética , Oxirredução , Custos e Análise de Custo , Ampicilina/farmacologia , Poluentes Químicos da Água/análise , Raios Ultravioleta , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA