Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538911

RESUMO

The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods. The packing mode with the lowest energy contains syn-anti and anti-syn H-bonding between stacks. It can accommodate R and S epimers, and side chain variability. For this packing, a match with the available EM data on the subunit axial repeat and optical data is obtained with multiple concentric cylinders for a rolling vector with the stacks running at an angle of 21° to the cylinder axis and with the BChl dipole moments running at an angle ߠ∼ 55° to the tube axis, in accordance with optical data. A packing mode involving alternating syn and anti parallel stacks that is at variance with EM appears higher in energy. A weak cross-peak at -6 ppm in the MAS NMR with 50 kHz spinning, assigned to C-181, matches the shift of antiparallel dimers, which possibly reflects a minor impurity-type fraction in the self-assembled BChl c.

2.
Phys Chem Chem Phys ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546236

RESUMO

Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl c, compared to the wild type (WT). Nearly complete 13C chemical shift assignments were obtained from well-resolved homonuclear 13C-13C RFDR data. For proton assignments heteronuclear 13C-1H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 132/31, 132/32, and 121/31, with distance constraints of less than 5 Å. These constraints indicate the syn-anti parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl syn-anti stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Qy band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and bchQ, while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in bchQ.

3.
Inorg Chem ; 62(9): 3776-3787, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802549

RESUMO

Limiting the dynamics of paramagnetic tags is crucial for the accuracy of the structural information derived from paramagnetic nuclear magnetic resonance (NMR) experiments. A hydrophilic rigid 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA)-like lanthanoid complex was designed and synthesized following a strategy that allows the incorporation of two sets of two adjacent substituents. This resulted in a C2 symmetric hydrophilic and rigid macrocyclic ring, featuring four chiral hydroxyl-methylene substituents. NMR spectroscopy was used to investigate the conformational dynamics of the novel macrocycle upon complexation with europium and compared to DOTA and its derivatives. The twisted square antiprismatic and square antiprismatic conformers coexist, but the former is favored, which is different from DOTA. Two-dimensional 1H exchange spectroscopy shows that ring flipping of the cyclen-ring is suppressed due to the presence of the four chiral equatorial hydroxyl-methylene substituents at proximate positions. The reorientation of the pendant arms causes conformational exchange between two conformers. The reorientation of the coordination arms is slower when the ring flipping is suppressed. This indicates that these complexes are suitable scaffolds to develop rigid probes for paramagnetic NMR of proteins. Due to their hydrophilic nature, it is anticipated that they are less likely to cause protein precipitation than their more hydrophobic counterparts.

4.
Pharmaceutics ; 13(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562356

RESUMO

Polymeric nanoparticles (NPs) find many uses in nanomedicine, from drug delivery to imaging. In this regard, poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) particles are the most widely applied types of nano-systems due to their biocompatibility and biodegradability. Here we developed novel fluorinated polymeric NPs as vectors for multi-modal nanoprobes. This approach involved modifying polymeric NPs with trifluoroacetamide (TFA) and loading them with a near-infrared (NIR) dye for different imaging modalities, such as magnetic resonance imaging (MRI) and optical imaging. The PLGA-PEG-TFA NPs generated were characterized in vitro using the C28/I2 human chondrocyte cell line and in vivo in a mouse model of osteoarthritis (OA). The NPs were well absorbed, as confirmed by confocal microscopy, and were non-toxic to cells. To test the NPs as a drug delivery system for contrast agents of OA, the nanomaterial was administered via the intra-articular (IA) administration method. The dye-loaded NPs were injected in the knee joint and then visualized and tracked in vivo by fluorine-19 nuclear magnetic resonance and fluorescence imaging. Here, we describe the development of novel intrinsically fluorinated polymeric NPs modality that can be used in various molecular imaging techniques to visualize and track OA treatments and their potential use in clinical trials.

5.
ACS Appl Nano Mater ; 3(11): 10586-10590, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33283172

RESUMO

Molecular transistors, electromagnetic waveguides, plasmonic devices, and novel generations of nanofluidic channels comprise precisely separated gaps of nanometric and subnanometric spacing. Nonetheless, fabricating a nanogap/nanochannel is a technological challenge, currently tackled by several approaches such as breakdown electromigration and lithography. The aforementioned techniques, though, are limited, respectively, in terms of gap stability and ultimate resolution. Here, nanogaps/nanochannels are templated via the microtomy of metallic thin films embedded in a polymer matrix and precisely separated by a nanometric, sacrificial layer of polyelectrolytes grown via the layer-by-layer (LbL) approach. The versatility of the LbL technique, both in terms of the number of layers and composition of polyelectrolytes, allows to finely tune the spacing across the gap; the LbL template can further be removed by plasma etching. Our findings pave the path toward the realization of molecularly defined functional spacings at the nanometer-scale for the modular implementation of devices integrating nanogap/nanochannel components.

6.
J Am Chem Soc ; 142(47): 19907-19916, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33191746

RESUMO

Despite a growing understanding of factors that drive monomer self-assembly to form supramolecular polymers, the effects of aromaticity gain have been largely ignored. Herein, we document the aromaticity gain in two different self-assembly modes of squaramide-based bolaamphiphiles. Importantly, O → S substitution in squaramide synthons resulted in supramolecular polymers with increased fiber flexibility and lower degrees of polymerization. Computations and spectroscopic experiments suggest that the oxo- and thiosquaramide bolaamphiphiles self-assemble into "head-to-tail" versus "stacked" arrangements, respectively. Computed energetic and magnetic criteria of aromaticity reveal that both modes of self-assembly increase the aromatic character of the squaramide synthons, giving rise to stronger intermolecular interactions in the resultant supramolecular polymer structures. These examples suggest that both hydrogen-bonding and stacking interactions can result in increased aromaticity upon self-assembly, highlighting its relevance in monomer design.


Assuntos
Substâncias Macromoleculares/química , Polímeros/química , Quinina/análogos & derivados , Ligação de Hidrogênio , Substâncias Macromoleculares/síntese química , Teoria Quântica , Quinina/química , Enxofre/química
7.
Chemistry ; 24(56): 14989-14993, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30088299

RESUMO

The molecular geometry and supramolecular packing of two bichromophoric prototypic light harvesting compounds D1A2 and D2A2, consisting of two naphthylimide energy donors that were attached to the 1,7 bay positions of a perylene monoimide diester energy acceptor, have been determined by a hybrid approach using magic angle spinning NMR spectroscopy and electron nano-crystallography (ENC), followed by modelling. NMR shift constraints, combined with the P 1 ‾ space group obtained from ENC, were used to generate a centrosymmetric dimer of truncated perylene fragments. This racemic packing motif is used in a biased molecular replacement approach to generate a partial 3D electrostatic scattering potential map. Resolving the structure of the bay substituents is guided by the inversion symmetry, and the distance constraints obtained from heteronuclear correlation spectra. The antenna molecules form a pseudocrystalline lattice of antiparallel centrosymmetric dimers with pockets of partially disordered bay substituents. The two molecules in a unit cell form a butterfly-type arrangement. The hybrid methodology that has been developed is robust and widely applicable for critical structural underpinning of self-assembling structures of large organic molecules.

8.
Sci Rep ; 7(1): 15200, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123155

RESUMO

Plants adapt to fluctuating light conditions by a process called non-photochemical quenching (NPQ), where membrane protein PsbS plays a crucial role and transforms a change in the pH-gradient across the thylakoid membrane under excess light conditions into a photoprotective state, leading to de-excitation of antenna chlorophylls. The PsbS activation mechanism is elusive and has been proposed to involve a monomerization step and protonation of specific residues. To elucidate its function, it is essential to produce PsbS in large quantities, stabilize PsbS in a membrane-mimicking environment and analyze its pH-dependent conformational structure. We present an approach for large-scale in-vitro production and spectroscopic characterization of PsbS under controlled, non-crystalline conditions. We produced PsbS of the moss Physcomitrella patens in milligram quantities in E. coli, refolded PsbS in several detergent types and analyzed its conformation at neutral and low pH by Dynamic Light Scattering and NMR spectroscopy. Our results reveal that at both pH conditions, PsbS exist as dimers or in apparent monomer-dimer equilibria. Lowering of the pH induces conformational changes, destabilizes the dimer state and shifts the equilibria towards the monomeric form. In vivo, a similar response upon thylakoid lumen acidification may tune PsbS activity in a gradual manner.


Assuntos
Bryopsida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Difusão Dinâmica da Luz , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas de Plantas/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Chemistry ; 23(39): 9346-9351, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28556025

RESUMO

Controlling complexity, flexibility, and functionality of synthetic and biomimetic materials requires insight into how molecular functionalities can be exploited for steering their packing. A fused NDI-salphen (NDI=naphthalene diimide) prototypic artificial photosynthesis material, DATZnS, is shown to be comprised of a phenazine motif, in which the alignment of electric dipole moments in a P2/c supramolecular scaffold can be modulated with bulky substituents. They can also be switched between parallel stacks of dipoles running antiparallel in the DATZnS-H compared with parallel stacks of dipoles in polar layers running in opposite directions in the DATZnS(3'-NMe) parent compound. Spatial correlations obtained from HETCOR spectra, collected with a long cross polarization contact time of 2 ms, reveal an antiparallel stacking for the DATZnS-H homologue. These constraints and limited data from TEM are used to construct a structural model within the P2/c space group determined by the molecular C2 symmetry. By using homology modelling, a pseudo octahedral coordination of the Zn is shown to follow the packing-induced chirality with enantiomeric pairs of the Λ and Δ forms alternating along antiparallel stacks. The model helps to understand how the steric hindrance modulates the self-assembly in this novel class of fused materials by steric hindrance at the molecular level.

10.
Top Curr Chem ; 338: 105-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22955505

RESUMO

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an effect that produces non-Boltzmann nuclear spin polarization which can be observed as modification of signal intensity in NMR spectroscopy. The effect is well known in liquid-state NMR where it is explained most generally by the classical radical pair mechanism (RPM). In the solid-state, other mechanisms are operative in the spin-dynamics of radical pairs such as three-spin mixing (TSM) and differential decay (DD). Initially the solid-state photo-CIDNP effect has been solely observed on natural photosynthetic reaction centers (RCs). Therefore the analytical capacity of the method has been explored in experiments on reaction centers (RCs) of the purple bacterium of Rhodobacter (R.) sphaeroides. Here we will provide an account on phenomenology, theory, and analytical capacity of the solid-state photo-CIDNP effect.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Processos Fotoquímicos , Rhodobacter sphaeroides/química
11.
J Am Chem Soc ; 132(12): 4431-7, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20205422

RESUMO

The cyanobacterial phytochrome Cph1 can be photoconverted between two thermally stable states, Pr and Pfr. The photochemically induced Pfr --> Pr back-reaction has been followed at low temperature by magic-angle spinning (MAS) NMR spectroscopy, allowing two intermediates, Lumi-F and Meta-F, to be trapped. Employing uniformly (13)C- and (15)N-labeled open-chain tetrapyrrole chromophores, all four states-Pfr, Lumi-F, Meta-F, and Pr-have been structurally characterized. In the first step, the double bond photoisomerization forming Lumi-F occurs. The second step, the transformation to Meta-F, is driven by the release of the mechanical tension. This process leads to the break of the hydrogen bond of the ring D nitrogen to Asp-207 and triggers signaling. The third step is protonically driven allowing the hydrogen-bonding interaction of the ring D nitrogen to be restored. Compared to the forward reaction, the order of events is changed, probably caused by the different properties of the hydrogen bonding partners of N24, leading to the directionality of the photocycle.


Assuntos
Cianobactérias/metabolismo , Fitocromo/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Temperatura Baixa , Cianobactérias/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Fotoquímica , Fotorreceptores Microbianos , Fitocromo/química , Fitocromo/classificação , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...