Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(6-1): 064137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020942

RESUMO

We introduce and investigate the effects of a new class of stochastic resetting protocol called subsystem resetting, whereby a subset of the system constituents in a many-body interacting system undergoes bare evolution interspersed with simultaneous resets at random times, while the remaining constituents evolve solely under the bare dynamics. Here, by reset is meant a reinitialization of the dynamics from a given state. We pursue our investigation within the ambit of the well-known Kuramoto model of coupled phase-only oscillators of distributed natural frequencies. Here, the reset protocol corresponds to a chosen set of oscillators being reset to a synchronized state at random times. We find that the mean ω_{0} of the natural frequencies plays a defining role in determining the long-time state of the system. For ω_{0}=0, the system reaches a synchronized stationary state at long times, characterized by a time-independent nonzero value of the synchronization order parameter that quantifies macroscopic order in the system. Moreover, we find that resetting even an infinitesimal fraction of the total number of oscillators, in the extreme limit of infinite resetting rate, has the drastic effect of synchronizing the entire system, even in parameter regimes in which the bare evolution does not support global synchrony. By contrast, for ω_{0}≠0, the dynamics allows at long times either a synchronized stationary state or an oscillatory synchronized state, with the latter characterized by an oscillatory behavior as a function of time of the order parameter, with a nonzero time-independent time average. Our results thus imply that the nonreset subsystem always gets synchronized at long times through the act of resetting of the reset subsystem. Our results, analytical using the Ott-Antonsen ansatz as well as those based on numerical simulations, are obtained for two representative oscillator frequency distributions, namely, a Lorentzian and a Gaussian. Given that it is easier to reset a fraction of the system constituents than the entire system, we discuss how subsystem resetting may be employed as an efficient mechanism to control attainment of global synchrony in the Kuramoto system.

2.
Phys Rev E ; 109(5): L052302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907503

RESUMO

A wide variety of engineered and natural systems are modeled as networks of coupled nonlinear oscillators. In nature, the intrinsic frequencies of these oscillators are not constant in time. Here, we probe the effect of such a temporal heterogeneity on coupled oscillator networks through the lens of the Kuramoto model. To do this, we shuffle repeatedly the intrinsic frequencies among the oscillators at either random or regular time intervals. What emerges is the remarkable effect that frequent shuffling induces earlier onset (i.e., at a lower coupling) of synchrony among the oscillator phases. Our study provides a novel strategy to induce and control synchrony under resource constraints. We demonstrate our results analytically and in experiments with a network of Wien Bridge oscillators with internal frequencies being shuffled in time.

3.
Phys Rev E ; 109(1-1): 014129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366425

RESUMO

We explore the thermodynamics of stochastic heat engines in the presence of stochastic resetting. The setup comprises an engine whose working substance is a Brownian particle undergoing overdamped Langevin dynamics in a harmonic potential with a time-dependent stiffness, with the dynamics interrupted at random times with a resetting to a fixed location. The effect of resetting to the potential minimum is shown to enhance the efficiency of the engine, while the output work is shown to have a nonmonotonic dependence on the rate of resetting. The resetting events are found to drive the system out of the linear response regime, even for small differences in the bath temperatures. Shifting the reset point from the potential minimum is observed to reduce the engine efficiency. The experimental setup for the realization of such an engine is briefly discussed.

4.
Phys Rev E ; 108(6-1): 064124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243549

RESUMO

We consider a system of globally coupled phase-only oscillators with distributed intrinsic frequencies and evolving in the presence of distributed Gaussian white noise, namely, a Gaussian white noise whose strength for every oscillator is a specified function of its intrinsic frequency. In the absence of noise, the model reduces to the celebrated Kuramoto model of spontaneous synchronization. For two specific forms of the mentioned functional dependence and for a symmetric and unimodal distribution of the intrinsic frequencies, we unveil the rich long-time behavior that the system exhibits, which stands in stark contrast to the case in which the noise strength is the same for all the oscillators, namely, in the studied dynamics, the system may exist in either a synchronized, or an incoherent, or a time-periodic state; interestingly, all these states also appear as long-time solutions of the Kuramoto dynamics for the case of bimodal frequency distributions, but in the absence of any noise in the dynamics.

5.
Phys Rev E ; 108(6-1): 064125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243552

RESUMO

We investigate the dynamics of a quantum system subjected to a time-dependent and conditional resetting protocol. Namely, we ask what happens when the unitary evolution of the system is repeatedly interrupted at random time instants with an instantaneous reset to a specified set of reset configurations taking place with a probability that depends on the current configuration of the system at the instant of reset? Analyzing the protocol in the framework of the so-called tight-binding model describing the hopping of a quantum particle to nearest-neighbor sites in a one-dimensional open lattice, we obtain analytical results for the probability of finding the particle on the different sites of the lattice. We explore a variety of dynamical scenarios, including the one in which the resetting time intervals are sampled from an exponential as well as from a power-law distribution, and a setup that includes a Floquet-type Hamiltonian involving an external periodic forcing. Under exponential resetting, and in both the presence and absence of the external forcing, the system relaxes to a stationary state characterized by localization of the particle around the reset sites. The choice of the reset sites plays a defining role in dictating the relative probability of finding the particle at the reset sites as well as in determining the overall spatial profile of the site-occupation probability. Indeed, a simple choice can be engineered that makes the spatial profile highly asymmetric even when the bare dynamics does not involve the effect of any bias. Furthermore, analyzing the case of power-law resetting serves to demonstrate that the attainment of the stationary state in this quantum problem is not always evident and depends crucially on whether the distribution of reset time intervals has a finite or an infinite mean.

6.
Chaos ; 32(7): 073109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907730

RESUMO

What happens when the paradigmatic Kuramoto model involving interacting oscillators of distributed natural frequencies and showing spontaneous collective synchronization in the stationary state is subject to random and repeated interruptions of its dynamics with a reset to the initial condition? While resetting to a synchronized state, it may happen between two successive resets that the system desynchronizes, which depends on the duration of the random time interval between the two resets. Here, we unveil how such a protocol of stochastic resetting dramatically modifies the phase diagram of the bare model, allowing, in particular, for the emergence of a synchronized phase even in parameter regimes for which the bare model does not support such a phase. Our results are based on an exact analysis invoking the celebrated Ott-Antonsen ansatz for the case of the Lorentzian distribution of natural frequencies and numerical results for Gaussian frequency distribution. Our work provides a simple protocol to induce global synchrony in the system through stochastic resetting.

7.
Phys Rev E ; 105(3-1): 034140, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428086

RESUMO

The dynamics of n rigid objects, each having d degrees of freedom, is played out in the configuration space of dimension nd. Being rigid, there are additional constraints at work that renders a portion of the configuration space inaccessible. In this paper, we make the assertion that treating the overall dynamics as a Markov process whose states are defined by the number of contacts made between the rigid objects provides an effective coarse-grained characterization of the otherwise complex phenomenon. This coarse graining reduces the dimensionality of the space from nd to one. We test this assertion for a one-dimensional array of curved squares each of which is undergoing a biased diffusion in its angular orientation.

8.
Chaos ; 31(8): 083130, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470257

RESUMO

The celebrated Kuramoto model provides an analytically tractable framework to study spontaneous collective synchronization and comprises globally coupled limit-cycle oscillators interacting symmetrically with one another. The Sakaguchi-Kuramoto model is a generalization of the basic model that considers the presence of a phase lag parameter in the interaction, thereby making it asymmetric between oscillator pairs. Here, we consider a further generalization by adding an interaction that breaks the phase-shift symmetry of the model. The highlight of our study is the unveiling of a very rich bifurcation diagram comprising of both oscillatory and non-oscillatory synchronized states as well as an incoherent state: There are regions of two-state as well as an interesting and hitherto unexplored three-state coexistence arising from asymmetric interactions in our model.

9.
Phys Rev E ; 102(3-1): 032202, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075901

RESUMO

A paradigmatic framework to study the phenomenon of spontaneous collective synchronization is provided by the Kuramoto model comprising a large collection of phase oscillators of distributed frequencies that are globally coupled through the sine of their phase differences. We study here a variation of the model by including nearest-neighbor interactions on a one-dimensional lattice. While the mean-field interaction resulting from the global coupling favors global synchrony, the nearest-neighbor interaction may have cooperative or competitive effects depending on the sign and the magnitude of the nearest-neighbor coupling. For unimodal and symmetric frequency distributions, we demonstrate that as a result, the model in the stationary state exhibits in contrast to the usual Kuramoto model both continuous and first-order transitions between synchronized and incoherent phases, with the transition lines meeting at a tricritical point. Our results are based on numerical integration of the dynamics as well as an approximate theory involving appropriate averaging of fluctuations in the stationary state.

10.
Phys Rev E ; 102(3-2): 039901, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075932

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.100.032131.

11.
Phys Rev E ; 102(1-1): 012206, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32794959

RESUMO

The Kuramoto model serves as a paradigm to study the phenomenon of spontaneous collective synchronization. We study here a nontrivial generalization of the Kuramoto model by including an interaction that breaks explicitly the rotational symmetry of the model. In an inertial frame (e.g., the laboratory frame), the Kuramoto model does not allow for a stationary state, that is, a state with time-independent value of the so-called Kuramoto (complex) synchronization order parameter z≡re^{iψ}. Note that a time-independent z implies r and ψ are both time independent, with the latter fact corresponding to a state in which ψ rotates at zero frequency (no rotation). In this backdrop, we ask: Does the introduction of the symmetry-breaking term suffice to allow for the existence of a stationary state in the laboratory frame? Compared to the original model, we reveal a rather rich phase diagram of the resulting model, with the existence of both stationary and standing wave phases. While in the former the synchronization order parameter r has a long-time value that is time independent, one has in the latter an oscillatory behavior of the order parameter as a function of time that nevertheless yields a nonzero and time-independent time average. Our results are based on numerical integration of the dynamical equations as well as an exact analysis of the dynamics by invoking the so-called Ott-Antonsen ansatz that allows to derive a reduced set of time-evolution equations for the order parameter.

12.
Phys Rev E ; 100(3-1): 032131, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640062

RESUMO

For mean-field classical spin systems exhibiting a second-order phase transition in the stationary state, we obtain within the corresponding phase-space evolution according to the Vlasov equation the values of the critical exponents describing power-law behavior of response to a small external field. The exponent values so obtained significantly differ from the ones obtained on the basis of an analysis of the static phase-space distribution, with no reference to dynamics. This work serves as an illustration that cautions against relying on a static approach, with no reference to the dynamical evolution, to extract critical exponent values for mean-field systems.

13.
Phys Rev E ; 99(1-1): 010104, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780368

RESUMO

Inspired by one-dimensional light-particle systems, the dynamics of a non-Hamiltonian system with long-range forces is investigated. While the molecular dynamics does not reach an equilibrium state, it may be approximated in the thermodynamic limit by a Vlasov equation that does possess stable stationary solutions. This implies that on a macroscopic scale the molecular dynamics evolves on a slow timescale that diverges with the system size. At the single-particle level, the evolution is driven by incoherent interaction between the particles, which may be effectively modeled by a noise, leading to a Brownian-like dynamics of the momentum. Because this self-generated diffusion process depends on the particle distribution, the associated Fokker-Planck equation is nonlinear, and a subdiffusive behavior of the momentum fluctuations emerges, in agreement with numerics.

14.
Phys Rev E ; 96(2-1): 022130, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950574

RESUMO

We study the dynamics of overdamped Brownian particles diffusing in conservative force fields and undergoing stochastic resetting to a given location at a generic space-dependent rate of resetting. We present a systematic approach involving path integrals and elements of renewal theory that allows us to derive analytical expressions for a variety of statistics of the dynamics such as (i) the propagator prior to first reset, (ii) the distribution of the first-reset time, and (iii) the spatial distribution of the particle at long times. We apply our approach to several representative and hitherto unexplored examples of resetting dynamics. A particularly interesting example for which we find analytical expressions for the statistics of resetting is that of a Brownian particle trapped in a harmonic potential with a rate of resetting that depends on the instantaneous energy of the particle. We find that using energy-dependent resetting processes is more effective in achieving spatial confinement of Brownian particles on a faster time scale than performing quenches of parameters of the harmonic potential.

15.
Phys Rev E ; 96(1-1): 012201, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347236

RESUMO

We introduce and implement an importance-sampling Monte Carlo algorithm to study systems of globally coupled oscillators. Our computational method efficiently obtains estimates of the tails of the distribution of various measures of dynamical trajectories corresponding to states occurring with (exponentially) small probabilities. We demonstrate the general validity of our results by applying the method to two contrasting cases: the driven-dissipative Kuramoto model, a paradigm in the study of spontaneous synchronization; and the conservative Hamiltonian mean-field model, a prototypical system of long-range interactions. We present results for the distribution of the finite-time Lyapunov exponent and a time-averaged order parameter. Among other features, our results show most notably that the distributions exhibit a vanishing standard deviation but a skewness that is increasing in magnitude with the number of oscillators, implying that nontrivial asymmetries and states yielding rare or atypical values of the observables persist even for a large number of oscillators.

16.
Phys Rev E ; 93(6): 060102, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415186

RESUMO

What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ∼τ^{-(1+α)};α>0? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α<1, to one that is time independent for α>1. The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.

17.
Phys Rev E ; 93(6): 066102, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415396

RESUMO

We present evidence that the mechanism proposed in Teles et al. [Phys. Rev. E 92, 020101 (2015)PRESCM1539-375510.1103/PhysRevE.92.020101], referred to as the TGDC mechanism, does apply to a model with repulsive mean-field interactions where it produces temperature inversion in a state whose inhomogeneity is due to an external field. Such evidence contradicts the core statement of the Comment. We also discuss a related issue, concerning the possible application of the TGDC mechanism to the solar corona.

18.
Artigo em Inglês | MEDLINE | ID: mdl-26382325

RESUMO

Temperature inversions occur in nature, e.g., in the solar corona and in interstellar molecular clouds: Somewhat counterintuitively, denser parts of the system are colder than dilute ones. We propose a simple and appealing way to spontaneously generate temperature inversions in systems with long-range interactions, by preparing them in inhomogeneous thermal equilibrium states and then applying an impulsive perturbation. In similar situations, short-range systems would typically relax to another thermal equilibrium, with a uniform temperature profile. By contrast, in long-range systems, the interplay between wave-particle interaction and spatial inhomogeneity drives the system to nonequilibrium stationary states that generically exhibit temperature inversion. We demonstrate this mechanism in a simple mean-field model and in a two-dimensional self-gravitating system. Our work underlines the crucial role the range of interparticle interaction plays in determining the nature of steady states out of thermal equilibrium.

19.
Artigo em Inglês | MEDLINE | ID: mdl-25353438

RESUMO

We study the dynamics of a system of coupled oscillators of distributed natural frequencies, by including the features of both thermal noise, parametrized by a temperature, and inertial terms, parametrized by a moment of inertia. For a general unimodal frequency distribution, we report here the complete phase diagram of the model in the space of dimensionless moment of inertia, temperature, and width of the frequency distribution. We demonstrate that the system undergoes a nonequilibrium first-order phase transition from a synchronized phase at low parameter values to an incoherent phase at high values. We provide strong numerical evidence for the existence of both the synchronized and the incoherent phase, treating the latter analytically to obtain the corresponding linear stability threshold that bounds the first-order transition point from below. In the limit of zero noise and inertia, when the dynamics reduces to the one of the Kuramoto model, we recover the associated known continuous transition. At finite noise and inertia but in the absence of natural frequencies, the dynamics becomes that of a well-studied model of long-range interactions, the Hamiltonian mean-field model. Close to the first-order phase transition, we show that the escape time out of metastable states scales exponentially with the number of oscillators, which we explain to be stemming from the long-range nature of the interaction between the oscillators.


Assuntos
Relógios Biológicos/fisiologia , Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Modelos Estatísticos , Transição de Fase , Animais , Simulação por Computador , Humanos , Dinâmica não Linear
20.
Phys Rev Lett ; 112(22): 220601, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24949748

RESUMO

We study one-dimensional fluctuating interfaces of length L, where the interface stochastically resets to a fixed initial profile at a constant rate r. For finite r in the limit L→∞, the system settles into a nonequilibrium stationary state with non-Gaussian interface fluctuations, which we characterize analytically for the Kardar-Parisi-Zhang and Edwards-Wilkinson universality class. Our results are corroborated by numerical simulations. We also discuss the generality of our results for a fluctuating interface in a generic universality class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA