Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(12): E2347-E2356, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270613

RESUMO

Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death.


Assuntos
Dano ao DNA , Íntrons , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Splicing de RNA
2.
J Proteomics ; 75(10): 3063-80, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22086083

RESUMO

Vivax malaria is the most widely distributed human malaria resulting in 80-300 million clinical cases every year. It causes severe infection and mortality but is generally regarded as a benign disease and has not been investigated in detail. The present study aimed to perform human serum proteome analysis in a malaria endemic area in India to identify potential serum biomarkers for vivax malaria and understand host response. The proteomic analysis was performed on 16 age and gender matched subjects (vivax patients and control) in duplicate. Protein extraction protocols were optimized for large coverage of the serum proteome and to obtain high-resolution data. Identification of 67 differentially expressed and statistically significant (Student's t-test; p<0.05) protein spots was established by MALDI-TOF/TOF mass spectrometry. Many of the identified proteins such as apolipoprotein A and E, serum amyloid A and P, haptoglobin, ceruloplasmin, and hemopexin are interesting from a diagnostic point of view and could further be studied as potential serum biomarkers. The differentially expressed serum proteins in vivax malaria identified in this study were subjected to functional pathway analysis using multiple software, including Ingenuity Pathway Analysis (IPA), Protein ANalysis THrough Evolutionary Relationships (PANTHER) and Database for Annotation, Visualization and Integrated Discovery (DAVID) functional annotation tool for better understanding of the biological context of the identified proteins, their involvement in various physiological pathways and association with disease pathogenesis. Functional pathway analysis of the differentially expressed proteins suggested the modulation of multiple vital physiological pathways, including acute phase response signaling, complement and coagulation cascades, hemostasis and vitamin D metabolism pathway due to this parasitic infection. This article is part of a Special Issue entitled: Proteomics: The clinical link.


Assuntos
Análise Química do Sangue/métodos , Proteínas Sanguíneas/análise , Imunidade/fisiologia , Malária Vivax/sangue , Malária Vivax/etiologia , Malária Vivax/imunologia , Proteoma/análise , Adulto , Estudos de Casos e Controles , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Parasita/fisiologia , Humanos , Malária Vivax/metabolismo , Masculino , Plasmodium vivax/fisiologia , Proteoma/metabolismo , Testes Sorológicos/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...