Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16002, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992102

RESUMO

Community sanitation is a fundamental human right and need. Every year, as per the World Bank, total cost of providing sanitation services is estimated at around 114 billion USD per year. In India, Swachh Bharat Abhiyan (SBA), a public welfare scheme (PWS), is aimed at addressing community sanitation problems. Despite the successful implementation of SBA, local communities still practise open defaecation. To deduce the behavioural patterns governing communal toilet use, interviews were conducted with the local communities in the Kho Nagorian area of Jaipur, Rajasthan, India. This qualitative survey examined attitudes towards the construction of a toilet, awareness towards the SBA scheme, and the willingness to use excreta-based pit humus. The study then discusses the factors that increase the local community's willingness to use these toilets. Results show that open defaecation is still prevalent in society. One way to foster the adoption of toilets is that the construction materials should mainly consist of local materials. As a recourse, places of worship could be used to influence people's perception of hygiene. In addition, community toilets should be cleaned often as well. PWS should not be made accessible at no cost to prevent a sense of entitlement among the people. A small sum should be charged to increase social responsibility towards the PWS. Another way to curb open defaecation is to tap into the sense of entitlement by making effective use of social campaign programs. Further, cross-table analysis revealed that the locals were inclined to use a toilet if they have invested in it. Advertisements were found to be ineffective, and proposals were made to make them effective. These findings aid in understanding public perceptions and can guide the development of public policies. The findings also assist in making tax distribution decisions that reflect public concerns, attitudes, and values.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38789705

RESUMO

This study aims to understand the impact of concrete ingredients on the environment. To analyze the effect of, three significant indexes have been taken into consideration, which are embodied carbon dioxide index (e-CO2), embodied energy consumption (e-energy), and embodied resource consumption (e-resource) index. The life cycle assessment (LCA) methodology has considered veto comprehending the probable application of sandstone waste in the form of a slurry (Sslurry) and powder (Spowder) for the development of self-compacting concrete (SCC). This study can be proven beneficial to evaluate the potential adverse effects from environmental and energy perspectives. One reference mix and eighteen design mixes of SCC have been designed and developed to perform an experimental program. An environmental impact comparison of the "hybrid" SCC was performed using the OpenLCA life cycle analysis software with Ecoinvent LCIA methods. The outcomes of this experimental program reveal that the partial replacement of pozzolana Portland cement (PPC) with Sslurry can reduce e-CO2 emission along with the e-energy and e-resource parameters. When Spowder was used as the partial substitution of fine aggregate (FA), only the e-resource index decreased, and e-CO2 and e-energy increased. Minimalist impact on the environment has been noticed when SCC is prepared with Sslurry and Spowder. A detailed LCA analysis study justifies the utilization of Sslurry and Spowder in SCC, which exhibits encouraging results concerning strength and quality. Hence, it was observed that Sslurry and Spowder in developing green and sustainable SCC with moderate strength characteristics are beneficial from an environmental impact perspective.

3.
J Biomol Struct Dyn ; : 1-16, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37334711

RESUMO

Aspergillosis is a major causative factor for morbidity in those with impaired immune systems, often caused by Aspergillus fumigatus. The diagnosis and treatment are difficult due to the diversity of individuals and risk factors and still pose a challenge for medical professionals. To understand the pathogenicity of any organism, it is critical to identify the significant metabolic pathways that are involved. Our work focused on developing kinetic models of critical pathways crucial for the survival of A. fumigatus using COPASI. While focusing on the folate biosynthesis, ergosterol biosynthesis and glycolytic pathway; sensitivity, time-course and steady-state analysis were performed to find the proteins/enzymes that are essential in the pathway and can be considered as potential drug targets. For further analysis of the interaction of drug targets identified, a protein-protein interaction (PPI) network was built, and hub nodes were identified using the Cytohubba package from Cytoscape. Based on the findings, dihydropteroate-synthase, dihydrofolate-reductase, 4-amino-4-deoxychorismate synthase, HMG-CoA-reductase, PG-isomerase and hexokinase could act as potential drug targets. Further, molecular docking and MM-GBSA analysis were performed with ligands chosen from DrugBank, and PubChem, and validated by experimental evidence and existing literature based on results from kinetic modeling and PPI network analysis. Based on docking scores and MM-GBSA results, molecular simulations were carried out for 1AJ2-dapsone, 1DIS-sulfamethazine, 1T02-lovastatin and 70YL-3-bromopyruvic acid complexes, which validated our findings. Our study provides a deeper insight into the mechanisms of A. fumigatus's metabolism to reveal dapsone, sulfamethazine, lovastatin and 3-bromopyruvic acid as potential drugs for the treatment of Aspergillosis.Communicated by Ramaswamy H. Sarma.

4.
Int J Inj Contr Saf Promot ; 30(3): 410-418, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37171894

RESUMO

Traffic fatalities from 2015 to 2019 in Uttar Pradesh (UP), India show that pedestrians and cyclists have the largest share of total road fatalities. This study analyzed the pedestrian's perceptions of risk in the medium-sized city-Bulandshahr-UP, India regarding the traffic and road features. Perception of risk provides important information in identifying potential risks and explaining travel choices by pedestrians. The study locations were selected based on identified blackspots i.e. clustering of actual fatal crashes during 2015-2019 in UP. The types of locations at the blackspots were intersections below flyover, four-way signalized intersections, midblocks and foot of flyovers. An empirical analysis is presented in the study by taking pedestrians' ranking of the selected risk factors like traffic speed, free left turn at intersections, unmarked crosswalks, median width, traffic volume and the number of lanes and using the Rank-ordered logit model. Traffic speed and median width were ranked as the two highest risk factors by pedestrians. The results also indicated that increased numbers of lanes are more likely to be perceived riskier by older age groups of pedestrians and females at intersections below flyovers and midblocks. A comparison of different locations shows that all the factors were significant at four-way signalized intersections, indicating more perceived risk by pedestrians at intersections. These significant results can be used by practitioners to design safer intersections and midblocks at selected locations for pedestrians in UP, India.


Assuntos
Acidentes de Trânsito , Pedestres , Feminino , Humanos , Idoso , Cidades , Fatores de Risco , Modelos Logísticos
5.
Front Cell Dev Biol ; 11: 1109648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923254

RESUMO

Ets variant 2 (Etv2), a member of the Ets factor family, has an essential role in the formation of endothelial and hematopoietic cell lineages during embryonic development. The functional role of ETS transcription factors is, in part, dependent on the interacting proteins. There are relatively few studies exploring the coordinated interplay between ETV2 and its interacting proteins that regulate mesodermal lineage determination. In order to identify novel ETV2 interacting partners, a yeast two-hybrid analysis was performed and the C2H2 zinc finger transcription factor VEZF1 (vascular endothelial zinc finger 1) was identified as a binding factor, which was specifically expressed within the endothelium during vascular development. To confirm this interaction, co-immunoprecipitation and GST pull down assays demonstrated the direct interaction between ETV2 and VEZF1. During embryoid body differentiation, Etv2 achieved its peak expression at day 3.0 followed by rapid downregulation, on the other hand Vezf1 expression increased through day 6 of EB differentiation. We have previously shown that ETV2 potently activated Flt1 gene transcription. Using a Flt1 promoter-luciferase reporter assay, we demonstrated that VEZF1 co-activated the Flt1 promoter. Electrophoretic mobility shift assay and Chromatin immunoprecipitation established VEZF1 binding to the Flt1 promoter. Vezf1 knockout embryonic stem cells had downregulation of hematoendothelial marker genes when undergoing embryoid body mediated mesodermal differentiation whereas overexpression of VEZF1 induced the expression of hematoendothelial genes during differentiation. These current studies provide insight into the co-regulation of the hemato-endothelial lineage development via a co-operative interaction between ETV2 and VEZF1.

6.
Water Sci Technol ; 86(2): 261-291, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35906907

RESUMO

Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.


Assuntos
Desinfetantes , Purificação da Água , Bactérias , Cloro/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Halogenação , Padrões de Referência , Águas Residuárias , Purificação da Água/métodos
7.
Drug Discov Today ; 27(8): 2170-2180, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35550438

RESUMO

Dysregulation of lipid metabolism is associated with cardiovascular/metabolic diseases, including atherosclerosis, liver diseases and type 2 diabetes mellitus (T2DM). Several miRNAs have been reported as regulators of different stages of lipid homeostasis, including cholesterol/fatty acid biosynthesis, degradation, transport, storage, and low-density (LDL) and high-density lipoprotein (HDL) formation. Indeed, various miRNAs are emerging as attractive therapeutic candidates for metabolic/cardiovascular disease (CVD). Here, we summarize the roles of miR-19b, miR-20a, miR-21, miR-27, miR-29, miR-34a, miR-144, miR-148a, and miR-199a in post-transcriptional regulation of genes involved in lipid homeostasis and their therapeutic potential. We also discuss experimental strategies for further development of these miRNAs as novel cardiometabolic therapeutics.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Doenças Metabólicas , MicroRNAs , Aterosclerose/metabolismo , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Homeostase/genética , Humanos , Metabolismo dos Lipídeos/genética , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , MicroRNAs/genética
8.
J Mol Cell Cardiol ; 158: 140-152, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081950

RESUMO

3-Hydroxy-3-methyl glutaryl-coenzyme A reductase (Hmgcr) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway. The regulation of Hmgcr in rat models of genetic hypertension (viz. Spontaneously Hypertensive Rat [SHR] and its normotensive control Wistar/Kyoto [WKY] strain) is unclear. Interestingly, Hmgcr transcript and protein levels are diminished in liver tissues of SHR as compared to WKY. This observation is consistent with the diminished plasma cholesterol level in SHR animals. However, the molecular basis of these apparently counter-intuitive findings remains completely unknown. Sequencing of the Hmgcr promoter in SHR and WKY strains reveals three variations: A-405G, C-62T and a 11 bp insertion (-398_-388insTGCGGTCCTCC) in SHR. Among these variations, A-405G occurs at an evolutionarily-conserved site among many mammals. Moreover, SHR-Hmgcr promoter displays lower activity than WKY-Hmgcr promoter in various cell lines. Transient transfections of Hmgcr-promoter mutants and in silico analysis suggest altered binding of Runx3 and Srebf1 across A-405G site. On the other hand, C-62T and -398_-388insTGCGGTCCTCC variations do not appear to contribute to the reduced Hmgcr promoter activity in SHR as compared to WKY. Indeed, chromatin immunoprecipitation assays confirm differential binding of Runx3 and Srebf1 to Hmgcr promoter leading to reduced expression of Hmgcr in SHR as compared to WKY under basal as well as cholesterol-modulated conditions. Taken together, this study provides, for the first time, molecular basis for diminished Hmgcr expression in SHR animals, which may account for the reduced circulating cholesterol level in this widely-studied model for cardiovascular diseases.


Assuntos
Alelos , Regulação da Expressão Gênica , Expressão Gênica , Hidroximetilglutaril-CoA Redutases/genética , Hipertensão/enzimologia , Hipertensão/genética , Regiões Promotoras Genéticas/genética , Animais , Células CHO , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Cricetulus , Feminino , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transfecção
9.
J Forensic Sci ; 65(4): 1337-1341, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32069371

RESUMO

Laser printers and writing instruments are being exploited by the forgers to produce fabricated documents. They often produce such documents by appending genuine signature on a blank sheet and later printing on it. Often these fabricated documents do not contain intersection of strokes and may pose a difficulty to forensic document examiners in analyzing cases related to such documents. Keeping in mind the limited research work done on nonintersecting strokes, the present study has been conducted with an aim to determine the sequence of nonintersecting strokes of gel pens and laser printers. Three hundred samples of nonintersecting strokes of gel pen ink and laser printing were prepared. Of these 300, 150 had laser-printed text below the gel pen strokes and the remaining 150 were prepared with gel pen stokes below the laser-printed text. The samples have been analyzed using Nikon SMZ 800N stereomicroscope. Three micro-conformation features, that is, pattern of toner distribution, ink distribution, and fiber distribution have been observed in the samples. The results demonstrate the successful establishment of sequence of nonintersecting strokes in case of gel pen and laser-printed documents by the determination of micro-conformation features.

10.
Mol Cell Biol ; 40(9)2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32071155

RESUMO

Hypercholesterolemia is a strong predictor of cardiovascular diseases. The 3-hydroxy-3-methylglutaryl coenzyme A reductase gene (Hmgcr) coding for the rate-limiting enzyme in the cholesterol biosynthesis pathway is a crucial regulator of plasma cholesterol levels. However, the posttranscriptional regulation of Hmgcr remains poorly understood. The main objective of this study was to explore the role of microRNAs (miRNAs) in the regulation of Hmgcr expression. Systematic in silico predictions and experimental analyses reveal that miRNA 27a (miR-27a) specifically interacts with the Hmgcr 3' untranslated region in murine and human hepatocytes. Moreover, our data show that Hmgcr expression is inversely correlated with miR-27a levels in various cultured cell lines and in human and rodent tissues. Actinomycin D chase assays and relevant experiments demonstrate that miR-27a regulates Hmgcr by translational attenuation followed by mRNA degradation. Early growth response 1 (Egr1) regulates miR-27a expression under basal and cholesterol-modulated conditions. miR-27a augmentation via tail vein injection of miR-27a mimic in high-cholesterol-diet-fed Apoe-/- mice shows downregulation of hepatic Hmgcr and plasma cholesterol levels. Pathway and gene expression analyses show that miR-27a also targets several other genes (apart from Hmgcr) in the cholesterol biosynthesis pathway. Taken together, miR-27a emerges as a key regulator of cholesterol biosynthesis and has therapeutic potential for the clinical management of hypercholesterolemia.


Assuntos
Colesterol/biossíntese , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Colesterol/genética , Colesterol/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Lipogênese/genética , Fígado/metabolismo , Camundongos , MicroRNAs/genética , Estabilidade de RNA , Ratos , Transfecção
12.
J Mol Biol ; 431(6): 1127-1147, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738894

RESUMO

Monoamine oxidase B (MAO-B), a flavoenzyme located in the outer mitochondrial membrane, is involved in the catabolism of monoamines. Altered levels of MAO-B are associated with cardiovascular/neuronal diseases. However, molecular mechanisms of MAO-B gene regulation are partially understood. We undertook a systematic analysis of the MAO-B gene to identify the key transcriptional/post-transcriptional regulatory molecules. Expression of MAO-B promoter-reporter constructs in cultured cells identified the -144/+25-bp domain as the core promoter region. Stringent in silico analysis of this core promoter predicted binding sites for several transcription factors. Over-expression/down-regulation of transcription factors Sp1/Egr1/CREB increased/decreased the MAO-B promoter-reporter activity and endogenous MAO-B protein level. Electrophoretic mobility shift assays and ChIP assays provided evidence for interactions of Sp1/Egr1/CREB with the MAO-B promoter. MAOB transcript level also positively correlated with the transcript level of Sp1/Egr1/CREB in various human tissue samples. Computational predictions using multiple algorithms coupled with systematic functional analysis revealed direct interactions of the microRNAs miR-1224 and miR-300 with MAO-B 3'-UTR. Dopamine dose-dependently enhanced MAO-B transcript and protein levels via increased binding of CREB to MAO-B promoter and reduced miR-1224/miR-300 levels. 8-Bromo-cAMP and forskolin augmented MAO-B expression, whereas inhibition of PKA diminished the gene expression suggesting involvement of cAMP-PKA axis. Interestingly, Sp1/Egr1/CREB/miR-1224 levels correlate with MAO-B expression in rodent models of hypertension/MPTP-induced neurodegeneration, indicating their roles in governing MAO-B gene expression in these disease states. Taken together, this study elucidates the previously unknown roles of the transcription factors Sp1/Egr1/CREB and microRNAs miR-1224/miR-300 in regulating MAO-B gene expression under basal/disease states involving dysregulated catecholamine levels.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Enzimológica da Expressão Gênica , MicroRNAs/metabolismo , Monoaminoxidase/genética , Fator de Transcrição Sp1/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Cricetulus , Regulação para Baixo , Genes Reporter , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Monoaminoxidase/metabolismo , Regiões Promotoras Genéticas , Ratos , Fatores de Transcrição , Transcrição Gênica
13.
J Am Chem Soc ; 139(15): 5588-5595, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28355876

RESUMO

Targeted covalent inhibitors have emerged as a powerful approach in the drug discovery pipeline. Key to this process is the identification of signaling pathways (or receptors) specific to (or overexpressed in) disease cells. In this context, fragment-based ligand discovery (FBLD) has significantly expanded our view of the ligandable proteome and affords tool compounds for biological inquiry. To date, such covalent ligand discovery has almost exclusively employed cysteine-reactive small-molecule fragments. However, functional cysteine residues in proteins are often redox-sensitive and can undergo oxidation in cells. Such reactions are particularly relevant in diseases, like cancer, which are linked to excessive production of reactive oxygen species. Once oxidized, the sulfur atom of cysteine is much less reactive toward electrophilic groups used in the traditional FBLD paradigm. To address this limitation, we recently developed a novel library of diverse carbon-based nucleophile fragments that react selectively with cysteine sulfenic acid formed in proteins via oxidation or hydrolysis reactions. Here, we report analysis of sulfenic acid-reactive C-nucleophile fragments screened against a colon cancer cell proteome. Covalent ligands were identified for >1280 S-sulfenylated cysteines present in "druggable" proteins and orphan targets, revealing disparate reactivity profiles and target preferences. Among the unique ligand-protein interactions identified was that of a pyrrolidinedione nucleophile that reacted preferentially with protein tyrosine phosphatases. Fragment-based covalent ligand discovery with C-nucleophiles affords an expansive snapshot of the ligandable "redoxome" with significant implications for covalent inhibitor pharmacology and also affords new chemical tools to investigate redox-regulation of protein function.


Assuntos
Carbono/farmacologia , Neoplasias do Colo/tratamento farmacológico , Cisteína/análogos & derivados , Proteoma/metabolismo , Ácidos Sulfênicos/farmacologia , Carbono/química , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cisteína/química , Cisteína/farmacologia , Descoberta de Drogas , Humanos , Ligantes , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Proteoma/antagonistas & inibidores , Ácidos Sulfênicos/química
14.
J Mol Cell Cardiol ; 102: 61-73, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865915

RESUMO

Despite the well-known role of cystathionine γ-lyase (Cth) in cardiovascular pathophysiology, transcriptional regulation of Cth remains incompletely understood. Sequencing of the Cth promoter region in mouse models of genetic/essential hypertension (viz. Blood Pressure High [BPH], Blood Pressure Low [BPL] and Blood Pressure Normal [BPN] mice) identified several genetic variations. Transient transfections of BPH/BPL-Cth promoter-reporter plasmids into various cell types revealed higher promoter activity of BPL-Cth than that of BPH-Cth. Corroboratively, endogenous Cth mRNA levels in kidney and liver tissues were also elevated in BPL mice. Computational analysis of the polymorphic Cth promoter region predicted differential binding affinity of c-Rel, HOXA3 and IRF1 with BPL/BPH-Cth promoter domains. Over-expression of c-Rel/HOXA3/IRF1 modulated BPL/BPH-Cth promoter activities in a consistent manner. Gel shift assays using BPH/BPL-Cth-promoter oligonucleotides with/without binding sites for c-Rel/HOXA3/IRF1 displayed formation of specific complexes with c-Rel/HOXA3/IRF1; addition of antibodies to reaction mixtures resulted in supershifts/inhibition of Cth promoter-transcription factor complexes. Furthermore, chromatin immunoprecipitation (ChIP) assays proved differential binding of c-Rel, HOXA3 and IRF1 with the polymorphic promoter region of BPL/BPH-Cth. Tumor necrosis factor-α (TNF-α) reduced the activities of BPL/BPH-Cth promoters to different extents that were further declined by ectopic expression of IRF1; on the other hand, siRNA-mediated down-regulation of IRF1 rescued the TNF-α-mediated suppression of the BPL/BPH-Cth promoter activities. In corroboration, ChIP analysis revealed enhanced binding of IRF1 with BPH/BPL-Cth promoter following TNF-α treatment. BPL/BPH-Cth promoter activity was diminished upon exposure of hepatocytes and cardiomyoblasts to ischemia-like pathological condition due to reduced binding of c-Rel with BPL/BPH-Cth-promoter. Taken together, this study reveals the molecular basis for the differential expression of Cth in mouse models of essential hypertension under basal and pathophysiological conditions.


Assuntos
Cistationina gama-Liase/genética , Regulação da Expressão Gênica , Hipertensão/genética , Hipertensão/fisiopatologia , Polimorfismo Genético , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sítios de Ligação , Pressão Sanguínea , Mapeamento Cromossômico , Biologia Computacional/métodos , Modelos Animais de Doenças , Hipertensão Essencial , Genômica/métodos , Camundongos , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Ligação Proteica , Locos de Características Quantitativas , Ratos , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
15.
Bioconjug Chem ; 27(5): 1411-8, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27123991

RESUMO

The comparative reaction efficiencies of currently used nucleophilic and electrophilic probes toward cysteine sulfenic acid have been thoroughly evaluated in two different settings-(i) a small molecule dipeptide based model and (ii) a recombinant protein model. We further evaluated the stability of corresponding thioether and sulfoxide adducts under reducing conditions which are commonly encountered during proteomic protocols and in cell analysis. Powered by the development of new cyclic and linear C-nucleophiles, the unsurpassed efficiency in the capture of sulfenic acid under competitive conditions is achieved and thus holds great promise as highly potent tools for activity-based sulfenome profiling.


Assuntos
Ácidos Sulfênicos/análise , Ácidos Sulfênicos/química , Transporte de Elétrons , Modelos Moleculares , Conformação Proteica
16.
Chem Commun (Camb) ; 52(16): 3414-7, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26878905

RESUMO

Concerns about off-target effects has motivated the development of reversible covalent inhibition strategies for targeting cysteine. However, such strategies have not been reported for the unique cysteine oxoform, sulfenic acid. Herein, we have designed and identified linear C-nucleophiles that react selectively with cysteine sulfenic acid. The resulting thioether adducts exhibit reversibility ranging from minutes to days under reducing conditions, showing the feasibility of tuning C-nucleophile reactivity across a wide range of time scales.


Assuntos
Cisteína/análogos & derivados , Ácidos Sulfênicos/química , Cisteína/química
17.
Chem Sci ; 7(1): 400-415, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819701

RESUMO

Oxidation of a protein cysteine thiol to sulfenic acid, termed S-sulfenylation, is a reversible post-translational modification that plays a crucial role in regulating protein function and is correlated with disease states. The majority of reaction-based small molecule and immunochemical probes used for detecting sulfenic acids are based on the 5,5-dimethyl-1,3-cyclohexanedione (dimedone) scaffold, which is selective, but suffers from low reactivity. In addition, mechanistic details and features that diminish or enhance nucleophile reactivity remain largely unknown. A significant hurdle to resolving the aforementioned issues has been the chemically unstable nature of small-molecule sulfenic acid models. Herein, we report a facile mass spectrometry-based assay and repurposed dipeptide-based model to screen a library of cyclic C-nucleophiles for reactivity with sulfenic acid under aqueous conditions. Observed rate constants for ~100 cyclic C-nucleophiles were obtained and, from this collection, we have identified novel compounds with more than 200-fold enhanced reactivity, as compared to dimedone. The increase in reactivity and retention of selectivity of these C-nucleophiles were validated in secondary assays, including a protein model for sulfenic acid. Together, this work represents a significant step toward developing new chemical reporters for detecting protein S-sulfenylation with superior kinetic resolution. The enhanced rates and varied composition of the C-nucleophiles should enable more comprehensive analyses of the sulfenome and serve as the foundation for reversible or irreversible nucleophilic covalent inhibitors that target oxidized cysteine residues in therapeutically important proteins.

18.
ACS Chem Biol ; 11(1): 172-84, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26524379

RESUMO

Development of effective therapies to eradicate persistent, slowly replicating M. tuberculosis (Mtb) represents a significant challenge to controlling the global TB epidemic. To develop such therapies, it is imperative to translate information from metabolome and proteome adaptations of persistent Mtb into the drug discovery screening platforms. To this end, reductive sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mtb. Therefore, inhibitors of this pathway are expected to serve as powerful tools in its preclinical and clinical validation as a therapeutic target for eradicating persisters. Here, we establish a first functional HTS platform for identification of APS reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules. Our HTS campaign involving 38 350 compounds led to the discovery of three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as MDR and XDR clinical isolates. Top compounds showed markedly diminished potency in a conditional ΔAPSR mutant, which could be restored by complementation with Mtb APSR. Furthermore, ITC studies on representative compounds provided evidence for direct engagement of the APSR target. Finally, potent APSR inhibitors significantly decreased the cellular levels of key reduced sulfur-containing metabolites and also induced an oxidative shift in mycothiol redox potential of live Mtb, thus providing functional validation of our screening data. In summary, we have identified first-in-class inhibitors of APSR that can serve as molecular probes in unraveling the links between Mtb persistence, antibiotic tolerance, and sulfate assimilation, in addition to their potential therapeutic value.


Assuntos
Antituberculosos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/antagonistas & inibidores , Enxofre/metabolismo , Animais , Antituberculosos/síntese química , Antituberculosos/química , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Reprodutibilidade dos Testes , Enxofre/química , Compostos de Enxofre/metabolismo , Tuberculose/tratamento farmacológico
19.
Nat Protoc ; 10(7): 1022-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26086405

RESUMO

Protein S-sulfenylation is the reversible oxidative modification of cysteine thiol groups to form cysteine S-sulfenic acids. Mapping the specific sites of protein S-sulfenylation onto complex proteomes is crucial to understanding the molecular mechanisms controlling redox signaling and regulation. This protocol describes global, in situ, site-specific analysis of protein S-sulfenylation using sulfenic acid-specific chemical probes and mass spectrometry (MS)-based proteomics. The major steps in this protocol are as follows: (i) optimization of conditions for selective labeling of cysteine S-sulfenic acids in intact cells with the commercially available dimedone-based probe, DYn-2; (ii) tagging the modified cysteines with a functionalized biotin reagent containing a cleavable linker via Cu(I)-catalyzed azide-alkyne cycloaddition reaction; (iii) enrichment of the biotin-tagged tryptic peptides with streptavidin; (iv) liquid chromatography-tandem MS (LC-MS/MS)-based shotgun proteomics; and (v) computational data analysis. We also outline strategies for quantitative analysis of this modification in cells responding to redox perturbations and discuss special issues pertaining to experimental design of thiol redox studies. Our chemoproteomic platform should be broadly applicable to the investigation of other bio-orthogonal chemically engineered post-translational modifications. The entire analysis protocol takes ∼1 week to complete.


Assuntos
Proteínas/metabolismo , Proteômica/métodos , Linhagem Celular , Humanos , Oxirredução , Processamento de Proteína Pós-Traducional , Proteínas/química , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo , Espectrometria de Massas em Tandem
20.
J Biol Chem ; 290(23): 14391-406, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25847246

RESUMO

Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.


Assuntos
Adenocarcinoma/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metaloproteinase 7 da Matriz/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/genética , Estômago/patologia , Adenocarcinoma/epidemiologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Carcinógenos/metabolismo , Linhagem Celular Tumoral , Feminino , Mucosa Gástrica/metabolismo , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Metaloproteinase 7 da Matriz/análise , Pessoa de Meia-Idade , Nicotina/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Fatores de Risco , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA