Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1379203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832117

RESUMO

Background: Pork processing plants in the United States (US) cease operations for 24-48 h every six or twelve months to perform intense sanitization (IS) using fogging, foaming, and further antimicrobial treatments to disrupt natural biofilms that may harbor pathogens and spoilage organisms. The impact such treatments have on short-term changes in environmental microorganisms is not well understood, nor is the rate at which bacterial communities return. Methods: Swab samples were collected from floor drains to provide representative environmental microorganisms at two US pork processing plants before, during, and after an IS procedure. Samples were collected from four coolers where finished carcasses were chilled and from four locations near cutting tables. Each sample was characterized by total mesophile count (TMC), total psychrophile count (TPC), and other indicator bacteria; their biofilm-forming ability, tolerance of the formed biofilm to a quaternary ammonium compound (300 ppm, QAC), and ability to protect co-inoculated Salmonella enterica. In addition, bacterial community composition was determined using shotgun metagenomic sequencing. Results: IS procedures disrupted bacteria present but to different extents depending on the plant and the area of the plant. IS reduced TPC and TMC, by up to 1.5 Log10 CFU only to return to pre-IS levels within 2-3 days. The impact of IS on microorganisms in coolers was varied, with reductions of 2-4 Log10, and required 2 to 4 weeks to return to pre-IS levels. The results near fabrication lines were mixed, with little to no significant changes at one plant, while at the other, two processing lines showed 4 to 6 Log10 reductions. Resistance to QAC and the protection of Salmonella by the biofilms varied between plants and between areas of the plants as well. Community profiling of bacteria at the genus level showed that IS reduced species diversity and the disruption led to new community compositions that in some cases did not return to the pre-IS state even after 15 to 16 weeks. Discussion: The results found here reveal the impact of using IS to disrupt the presence of pathogen or spoilage microorganisms in US pork processing facilities may not have the intended effect.

2.
Sci Rep ; 14(1): 13257, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858528

RESUMO

Salmonella enterica and Escherichia coli are major food-borne human pathogens, and their genomes are routinely sequenced for clinical surveillance. Computational pipelines designed for analyzing pathogen genomes should both utilize the most current information from annotation databases and increase the coverage of these databases over time. We report the development of the GEA pipeline to analyze large batches of E. coli and S. enterica genomes. The GEA pipeline takes as input paired Illumina raw reads files which are then assembled followed by annotation. Alternatively, assemblies can be provided as input and directly annotated. The pipeline provides predictive genome annotations for E. coli and S. enterica with a focus on the Center for Genomic Epidemiology tools. Annotation results are provided as a tab delimited text file. The GEA pipeline is designed for large-scale E. coli and S. enterica genome assembly and characterization using the Center for Genomic Epidemiology command-line tools and high-performance computing. Large scale annotation is demonstrated by an analysis of more than 14,000 Salmonella genome assemblies. Testing the GEA pipeline on E. coli raw reads demonstrates reproducibility across multiple compute environments and computational usage is optimized on high performance computers.


Assuntos
Escherichia coli , Genoma Bacteriano , Salmonella enterica , Escherichia coli/genética , Salmonella enterica/genética , Software , Biologia Computacional/métodos , Anotação de Sequência Molecular , Genômica/métodos , Salmonella/genética , Humanos
3.
J Food Prot ; 87(6): 100288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697484

RESUMO

Escherichia coli commonly found in the gastrointestinal tracts of food animals include Shiga toxin-producing E. coli (STEC, stx+, eae-), Enterohemorrhagic E. coli (EHEC, stx+, eae+), Enteropathogenic E. coli (EPEC, stx-, eae+), and "nondiarrheagenic" E. coli (NDEC, stx-, eae-). EHEC, EPEC, and STEC are associated with foodborne disease outbreaks. During meat processing, disinfectants are employed to control various bacteria, including human pathogens. Concerns exist that E. coli resistant to antibiotics are less susceptible to disinfectants used during meat processing. Since EHEC, EPEC, and STEC with reduced susceptibility to disinfectants are potential public health risks, the goal of this study was to evaluate the association of antibiotic resistant (ABR) E. coli with increased tolerance to 4% lactic acid (LA) and 150 ppm quaternary ammonium compounds (QACs). A pool of 3,367 E. coli isolated from beef cattle, veal calves, swine, and sheep at various processing stages was screened to identify ABR E. coli. Resistance to ≥1 of the six antibiotics examined was identified in 27.9%, 36.1%, 54.5%, and 28.7% among the NDEC (n = 579), EHEC (n = 693), EPEC (n = 787), and STEC (n = 1308) isolates evaluated, respectively. Disinfectant tolerance did not differ (P > 0.05) between ABR and antibiotic susceptible EHEC isolates. Comparable frequencies (P > 0.05) of biofilm formation or congo red binding were observed between ABR and antibiotic susceptible strains of E. coli. Understanding the frequencies of ABR and disinfectant tolerance among E. coli present in food-animal is a critically important component of meat safety.


Assuntos
Antibacterianos , Desinfetantes , Escherichia coli , Carne Vermelha , Desinfetantes/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Carne Vermelha/microbiologia , Humanos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Bovinos , Carne/microbiologia , Contaminação de Alimentos/análise
4.
Front Microbiol ; 15: 1338600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435686

RESUMO

Salmonella enterica is a leading cause of foodborne illness in the U.S. In the meat industry, one action taken to address pathogen contamination incidence is an intense sanitization (IS) of the entire processing plant that many large processors perform annually or semiannually. However, this procedure's immediate and long-term impact on environment microbial community and pathogen colonization are unknown. Here we investigated the impact of IS procedure on environmental biofilms and the subsequent S. enterica colonization and stress tolerance. Environmental samples were collected from floor drains at various areas 1 week before, 1 week, and 4 weeks after the IS procedure at a beef plant with sporadic S. enterica prevalence. Biofilm formation by microorganisms in the drain samples without S. enterica presence was tested under processing temperature. The ability of the biofilms to recruit and/or protect a co-inoculated S. enterica strain from quaternary ammonium compound (QAC) treatment was determined. The community structure of each drain sample was elucidated through 16S rRNA amplicon community sequencing. Post-IS samples collected from 8 drains formed significantly stronger biofilms than the respective pre-IS samples. S. enterica colonization was not different between the pre- and post-IS biofilms at all drain locations. S. enterica survival in QAC-treated pre- and post-IS mixed biofilms varied depending upon the drain location but a higher survival was associated with a stronger biofilm matrix. The 16S rRNA amplicon gene community sequencing results exhibited a decrease in community diversity 1 week after IS treatment but followed by a significant increase 4 weeks after the treatment. The IS procedure also significantly altered the community composition and the higher presence of certain species in the post-IS community may be associated with the stronger mixed biofilm formation and Salmonella tolerance. Our study suggested that the IS procedure might disrupt the existing environmental microbial community and alter the natural population composition, which might lead to unintended consequences as a result of a lack of competition within the multispecies mixture. The survival and recruitment of species with high colonizing capability to the post-IS community may play crucial roles in shaping the ensuing ecological dynamics.

5.
Sci Rep ; 14(1): 7026, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528005

RESUMO

The Amplified Luminescent Proximity Homogenous Assay-linked Immunosorbent Assay (AlphaLISA) is known for detecting various protein targets; however, its ability to detect nucleic acid sequences is not well established. Here, the capabilities of the AlphaLISA technology were expanded to include direct detection of DNA (aka: oligo-Alpha) and was applied to the detection of Listeria monocytogenes. Parameters were defined that allowed the newly developed oligo-Alpha to differentiate L. monocytogenes from other Listeria species through the use of only a single nucleotide polymorphism within the 16S rDNA region. Investigations into the applicability of this assay with different matrices demonstrated its utility in both milk and juice. One remarkable feature of the oligo-Alpha is that greater sensitivity could be achieved through the use of multiple acceptor oligos compared to only a single acceptor oligo, even when only a single donor oligo was employed. Additional acceptor oligos were easily incorporated into the assay and a tenfold change in the detection limit was readily achieved, with detection limits of 250 attomole of target being recorded. In summary, replacement of antibodies with oligonucleotides allows us to take advantage of genotypic difference(s), which both expands its repertoire of biological markers and furthers its use as a diagnostic tool.


Assuntos
Listeria monocytogenes , Listeria , Listeria monocytogenes/genética , Listeria/genética , Sequência de Bases , Anticorpos/genética , DNA Ribossômico , Sensibilidade e Especificidade , Microbiologia de Alimentos
6.
Sci Rep ; 13(1): 15388, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717059

RESUMO

This study developed a new tool, differential staining fluorescence microscopy (DSFM), to measure the biovolume and track the location of enteric pathogens in mixed-species biofilms which can pose a risk to food safety in beef processing facilities. DSFM was employed to examine the impact of pathogenic bacteria, Escherichia coli O157:H7 and three different Salmonella enterica strains on mixed-species biofilms of beef processing facilities. Fourteen floor drain biofilm samples from three beef processing plants were incubated with overnight BacLight stained enteric pathogens at 7 °C for 5 days on stainless steel surface then counter-stained with FM-1-43 biofilm stain and analyzed using fluorescence microscopy. Notable variations in biovolume of biofilms were observed across the fourteen samples. The introduction of E. coli O157:H7 and S. enterica strains resulted in diverse alterations of biofilm biovolume, suggesting distinct impacts on mixed-species biofilms by different enteric pathogens which were revealed to be located in the upper layer of the mixed-species biofilms. Pathogen strain growth curve comparisons and verification of BacLight Red Stain staining effectiveness were validated. The findings of this study show that the DSFM method is a promising approach to studying the location of enteric pathogens within mixed-species biofilms recovered from processing facilities. Understanding how foodborne pathogens interact with biofilms will allow for improved targeted antimicrobial interventions.


Assuntos
Corantes , Escherichia coli O157 , Bovinos , Animais , Coloração e Rotulagem , Biofilmes , Microscopia de Fluorescência
7.
Microbiol Resour Announc ; 12(10): e0042223, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37768048

RESUMO

Infection by antibiotic-resistant extraintestinal pathogenic Escherichia coli may result in treatment failure and thus pose a serious public health threat. Here we report the complete closed genome sequence of three multidrug-resistant (MDR) human uropathogenic E. coli isolates using long-read sequencing technology and de novo assembly.

8.
J Food Prot ; 86(1): 100031, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916589

RESUMO

Understanding the dynamics of stress-resistant Escherichia coli (E. coli) across the meat production and processing continuum is important for tracking sources of such microbes and devising effective modes of control. The Locus of Heat Resistance (LHR) is a ∼14-19 Kb genetic element imparting extreme heat resistance (XHR) in Enterobacteriaceae. It has been hypothesized that thermal and antimicrobial interventions applied during meat processing may select for LHR+E. coli. Thus, our goal was to study the prevalence and molecular biology of LHR+E. coli among lots of beef cattle (n = 3) from production through processing. Two hundred thirty-two generic E. coli isolated from the same animals through seven stages of the beef processing continuum (cattle in feedyards to packaged strip loins) were examined. LHR+E. coli were rare (0.6%; 1 of 180) among the early stages of the beef continuum (feces and hides at feedlot, feces and hides at harvest, and preevisceration carcasses), whereas the prevalence of LHR+E. coli on final carcasses and strip loins was remarkably higher. Half (14 of 28) of the final carcass E. coli possessed the LHR, while 79.2% (19 of 24) of the strip loin E. coli did. Eighty-five percent (29 of 34) of the LHR+E. coli presented with the XHR phenotype. The selection or enrichment of LHR+E. coli from harvest steps to the final products appeared unlikely as the LHR+E. coli isolates were effectively controlled by antimicrobial interventions typically used during beef processing. Further, whole-genome sequencing of the isolates suggested LHR+E. coli are persisting in the chilled processing environment and that horizontal LHR transfer among E. coli isolates may take place.


Assuntos
Escherichia coli , Temperatura Alta , Bovinos , Animais , Carne
9.
Sci Rep ; 12(1): 5305, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351927

RESUMO

Certain strains of Escherichia coli possess and express the toxin colibactin (Clb) which induces host mutations identical to the signature mutations of colorectal cancer (CRC) that lead to tumorigenic lesions. Since cattle are a known reservoir of several Enterobacteriaceae including E. coli, this study screened for clb amongst E. coli isolated from colons of cattle-at-harvest (entering beef processing facility; n = 1430), across the beef processing continuum (feedlot to finished subprimal beef; n = 232), and in ground beef (n = 1074). Results demonstrated that clb+ E. coli were present in cattle and beef. Prevalence of clb+ E. coli from colonic contents of cattle and ground beef was 18.3% and 5.5%, respectively. clb+ E. coli were found susceptible to commonly used meat processing interventions. Whole genome sequencing of 54 bovine and beef clb+ isolates showed clb occurred in diverse genetic backgrounds, most frequently in phylogroup B1 (70.4%), MLST 1079 (42.6%), and serogroup O49 (40.7%).


Assuntos
Infecções por Escherichia coli , Policetídeos , Animais , Bovinos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Tipagem de Sequências Multilocus , Peptídeos
10.
Microbiol Resour Announc ; 10(29): e0050221, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292065

RESUMO

Escherichia coli isolate AW1.7 is an extremely heat-resistant bacterium and has been widely used as a reference strain in extreme heat resistance studies for almost a decade. Here, we report its complete closed genome sequence.

11.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483306

RESUMO

Microbial resistance to processing treatments poses a food safety concern, as treatment tolerant pathogens can emerge. Occasional foodborne outbreaks caused by pathogenic Escherichia coli have led to human and economic losses. Therefore, this study screened for the extreme heat resistance (XHR) phenotype as well as one known genetic marker, the locus of heat resistance (LHR), in 4,123 E. coli isolates from diverse meat animals at different processing stages. The prevalences of XHR and LHR among the meat-borne E. coli were found to be 10.3% and 11.4%, respectively, with 19% agreement between the two. Finished meat products showed the highest LHR prevalence (24.3%) compared to other processing stages (0 to 0.6%). None of the LHR+E. coli in this study would be considered pathogens based on screening for virulence genes. Four high-quality genomes were generated by whole-genome sequencing of representative LHR+ isolates. Nine horizontally acquired LHRs were identified and characterized, four plasmid-borne and five chromosomal. Nine newly identified LHRs belong to ClpK1 LHR or ClpK2 LHR variants sharing 61 to 68% nucleotide sequence identity, while one LHR appears to be a hybrid. Our observations suggest positive correlation between the number of LHR regions present in isolates and the extent of heat resistance. The isolate exhibiting the highest degree of heat resistance possessed four LHRs belonging to three different variant groups. Maintenance of as many as four LHRs in a single genome emphasizes the benefits of the LHR in bacterial physiology and stress response.IMPORTANCE Currently, a "multiple-hurdle" approach based on a combination of different antimicrobial interventions, including heat, is being utilized during meat processing to control the burden of spoilage and pathogenic bacteria. Our recent study (M. Guragain, G. E. Smith, D. A. King, and J. M. Bosilevac, J Food Prot 83:1438-1443, 2020, https://doi.org/10.4315/JFP-20-103) suggests that U.S. beef cattle harbor Escherichia coli that possess the locus of heat resistance (LHR). LHR seemingly contributes to the global stress tolerance in bacteria and hence poses a food safety concern. Therefore, it is important to understand the distribution of the LHRs among meat-borne bacteria identified at different stages of different meat processing systems. Complete genome sequencing and comparative analysis of selected heat-resistant bacteria provide a clearer understanding of stress and heat resistance mechanisms. Further, sequencing data may offer a platform to gain further insights into the genetic background that provides optimal bacterial tolerance against heat and other processing treatments.


Assuntos
Escherichia coli/fisiologia , Genoma Bacteriano , Carne/microbiologia , Escherichia coli/genética , Temperatura Alta , Sequenciamento Completo do Genoma
12.
J Food Prot ; 83(8): 1438-1443, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299091

RESUMO

ABSTRACT: Prevalence of heat-resistant bacteria in beef poses a potential problem as thermal interventions are routinely used in beef processing to control contamination. Despite extreme heat-resistant (XHR) Escherichia coli having been isolated from a ground beef processing plant, there has not been a study to assess the prevalence of XHR E. coli among types of cattle. Therefore, this study used a screening assay for XHR gram-negative bacteria and its molecular determinant, the locus of heat resistance (LHR), on feces collected from U.S. cattle. Fecal samples were collected from fed (n = 538), cull dairy (n = 425), and cull beef (n = 475) cattle at nine regional beef processing plants located across the United States. Among the 1,438 cattle sampled from northern (n = 288), southern (n = 288), eastern (n = 287), western (n = 287), and central (n = 288) regions of the United States, 91 (6.3%) cattle showed presence of XHR bacteria, as evident by growth in MacConkey broth following heat treatment of 80°C for 15 min, in their feces. Heat-resistant bacteria (n = 140) were isolated from the 91 fecal samples. Prevalence of XHR bacteria was highest (11%) in cattle from the northern region. Ninety percent of the XHR isolates were identified as E. coli. Multiplex PCR of all 1,438 fecal samples showed that the LHR was absent in 40.7% of samples and intact in 18.7% of samples. Despite the higher prevalence of intact LHR from PCR analysis, only 11 samples (0.8%) were confirmed to contain bacteria with an intact LHR. The LHR was absent in 91% of XHR bacteria, and only 7.9% of XHR bacteria had intact LHR, suggesting a novel mechanism of heat resistance. By developing and using the screening assays, we established the prevalence of XHR bacteria (6.3%) and LHR+ bacteria (0.8%) in U.S. beef cattle.


Assuntos
Escherichia coli , Calor Extremo , Animais , Bovinos , Fezes , Bactérias Gram-Negativas , Prevalência , Estados Unidos/epidemiologia
13.
PLoS Pathog ; 14(4): e1006998, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684093

RESUMO

Poly-ß(1,6)-N-acetyl-D-glucosamine (PNAG) is a major biofilm component of many pathogenic bacteria. The production, modification, and export of PNAG in Escherichia coli and Bordetella species require the protein products encoded by the pgaABCD operon. PgaB is a two-domain periplasmic protein that contains an N-terminal deacetylase domain and a C-terminal PNAG binding domain that is critical for export. However, the exact function of the PgaB C-terminal domain remains unclear. Herein, we show that the C-terminal domains of Bordetella bronchiseptica PgaB (PgaBBb) and E. coli PgaB (PgaBEc) function as glycoside hydrolases. These enzymes hydrolyze purified deacetylated PNAG (dPNAG) from Staphylococcus aureus, disrupt PNAG-dependent biofilms formed by Bordetella pertussis, Staphylococcus carnosus, Staphylococcus epidermidis, and E. coli, and potentiate bacterial killing by gentamicin. Furthermore, we found that PgaBBb was only able to hydrolyze PNAG produced in situ by the E. coli PgaCD synthase complex when an active deacetylase domain was present. Mass spectrometry analysis of the PgaB-hydrolyzed dPNAG substrate showed a GlcN-GlcNAc-GlcNAc motif at the new reducing end of detected fragments. Our 1.76 Å structure of the C-terminal domain of PgaBBb reveals a central cavity within an elongated surface groove that appears ideally suited to recognize the GlcN-GlcNAc-GlcNAc motif. The structure, in conjunction with molecular modeling and site directed mutagenesis led to the identification of the dPNAG binding subsites and D474 as the probable catalytic acid. This work expands the role of PgaB within the PNAG biosynthesis machinery, defines a new glycoside hydrolase family GH153, and identifies PgaB as a possible therapeutic agent for treating PNAG-dependent biofilm infections.


Assuntos
Amidoidrolases/metabolismo , Biofilmes/crescimento & desenvolvimento , Bordetella/enzimologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Glicosídeo Hidrolases/metabolismo , beta-Glucanas/química , Acetilação , Amidoidrolases/química , Bordetella/crescimento & desenvolvimento , Cristalografia por Raios X , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Glicosídeo Hidrolases/química , Óperon , Conformação Proteica , beta-Glucanas/metabolismo
14.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29581411

RESUMO

Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.IMPORTANCE BpsR, the previously described regulator of biofilm formation and Bps polysaccharide production, controls Bordetella bronchiseptica growth by regulating the expression of genes involved in the degradation of nicotinic acid (NA). 6-Hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradation pathway prevented BpsR from binding to DNA and was the actual in vivo inducer. We hypothesize that BpsR enables Bordetella bacteria to efficiently and selectively utilize NA for their survival depending on the environment in which they reside. The results reported herein lay the foundation for future investigations of how BpsR and the alteration of its activity by NA orchestrate the control of Bordetella growth, metabolism, biofilm formation, and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/crescimento & desenvolvimento , Bordetella bronchiseptica/metabolismo , Regulação Bacteriana da Expressão Gênica , Niacina/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Bordetella bronchiseptica/genética , Deleção de Genes , Genes Reguladores , Transcrição Gênica
15.
Cell Calcium ; 61: 32-43, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034459

RESUMO

Pseudomonas aeruginosa is an opportunistic multidrug resistant pathogen causing severe chronic infections. Our previous studies showed that elevated calcium (Ca2+) enhances production of several virulence factors and plant infectivity of the pathogen. Here we show that Ca2+ increases resistance of P. aeruginosa PAO1 to tobramycin, antibiotic commonly used to treat Pseudomonas infections. LC-MS/MS-based comparative analysis of the membrane proteomes of P aeruginosa grown at elevated versus not added Ca2+, determined that the abundances of two RND (resistance-nodulation-cell division) efflux pumps, MexAB-OprM and MexVW-OprM, were increased in the presence of elevated Ca2+. Analysis of twelve transposon mutants with disrupted RND efflux pumps showed that six of them (mexB, muxC, mexY, mexJ, czcB, and mexE) contribute to Ca2+-induced tobramycin resistance. Transcriptional analyses by promoter activity and RT-qPCR showed that the expression of mexAB, muxABC, mexXY, mexJK, czcCBA, and mexVW is increased by elevated Ca2+. Disruption of mexJ, mexC, mexI, and triA significantly decreased Ca2+-induced plant infectivity of the pathogen. Earlier, our group showed that PAO1 maintains intracellular Ca2+ (Ca2+in) homeostasis, which mediates Ca2+ regulation of P. aeruginosa virulence, and identified four putative Ca2+ transporters involved in this process (Guragain et al., 2013). Here we show that three of these transporters (PA2435, PA2092, PA4614) play role in Ca2+-induced tobramycin resistance and one of them (PA2435) contributes to Ca2+ regulation of mexAB-oprM promoter activity. Furthermore, mexJ, czcB, and mexE contribute to the maintenance of Ca2+in homeostasis. This provides the first evidence that Ca2+in homeostasis mediates Ca2+ regulation of RND transport systems, which contribute to Ca2+-enhanced tobramycin resistance and plant infectivity in P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Cálcio/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Divisão Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
16.
J Bacteriol ; 198(6): 951-63, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26755627

RESUMO

UNLABELLED: Pseudomonas aeruginosa is an opportunistic human pathogen that causes severe, life-threatening infections in patients with cystic fibrosis (CF), endocarditis, wounds, or artificial implants. During CF pulmonary infections, P. aeruginosa often encounters environments where the levels of calcium (Ca(2+)) are elevated. Previously, we showed that P. aeruginosa responds to externally added Ca(2+) through enhanced biofilm formation, increased production of several secreted virulence factors, and by developing a transient increase in the intracellular Ca(2+) level, followed by its removal to the basal submicromolar level. However, the molecular mechanisms responsible for regulating Ca(2+)-induced virulence factor production and Ca(2+) homeostasis are not known. Here, we characterized the genome-wide transcriptional response of P. aeruginosa to elevated [Ca(2+)] in both planktonic cultures and biofilms. Among the genes induced by CaCl2 in strain PAO1 was an operon containing the two-component regulator PA2656-PA2657 (here called carS and carR), while the closely related two-component regulators phoPQ and pmrAB were repressed by CaCl2 addition. To identify the regulatory targets of CarSR, we constructed a deletion mutant of carR and performed transcriptome analysis of the mutant strain at low and high [Ca(2+)]. Among the genes regulated by CarSR in response to CaCl2 are the predicted periplasmic OB-fold protein, PA0320 (here called carO), and the inner membrane-anchored five-bladed ß-propeller protein, PA0327 (here called carP). Mutations in both carO and carP affected Ca(2+) homeostasis, reducing the ability of P. aeruginosa to export excess Ca(2+). In addition, a mutation in carP had a pleotropic effect in a Ca(2+)-dependent manner, altering swarming motility, pyocyanin production, and tobramycin sensitivity. Overall, the results indicate that the two-component system CarSR is responsible for sensing high levels of external Ca(2+) and responding through its regulatory targets that modulate Ca(2+) homeostasis, surface-associated motility, and the production of the virulence factor pyocyanin. IMPORTANCE: During infectious disease, Pseudomonas aeruginosa encounters environments with high calcium (Ca(2+)) concentrations, yet the cells maintain intracellular Ca(2+) at levels that are orders of magnitude less than that of the external environment. In addition, Ca(2+) signals P. aeruginosa to induce the production of several virulence factors. Compared to eukaryotes, little is known about how bacteria maintain Ca(2+) homeostasis or how Ca(2+) acts as a signal. In this study, we identified a two-component regulatory system in P. aeruginosa PAO1, termed CarRS, that is induced at elevated Ca(2+) levels. CarRS modulates Ca(2+) signaling and Ca(2+) homeostasis through its regulatory targets, CarO and CarP. The results demonstrate that P. aeruginosa uses a two-component regulatory system to sense external Ca(2+) and relays that information for Ca(2+)-dependent cellular processes.


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Homeostase , Pseudomonas aeruginosa/efeitos dos fármacos , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Deleção de Genes , Perfilação da Expressão Gênica , Óperon , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Fatores de Virulência/genética
17.
Cell Calcium ; 57(3): 151-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25555683

RESUMO

With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding ß-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Células Procarióticas/metabolismo , Animais , Humanos , Estrutura Secundária de Proteína
18.
PLoS One ; 9(2): e98985, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918783

RESUMO

Pseudomonas aeruginosa is a facultative human pathogen, and a major cause of nosocomial infections and severe chronic infections in endocarditis and in cystic fibrosis (CF) patients. Calcium (Ca2+) accumulates in pulmonary fluids of CF patients, and plays a role in the hyperinflammatory response to bacterial infection. Earlier we showed that P. aeruginosa responds to increased Ca2+ levels, primarily through the increased production of secreted virulence factors. Here we describe the role of putative Ca2+-binding protein, with an EF-hand domain, PA4107 (EfhP), in this response. Deletion mutations of efhP were generated in P. aeruginosa strain PAO1 and CF pulmonary isolate, strain FRD1. The lack of EfhP abolished the ability of P. aeruginosa PAO1 to maintain intracellular Ca2+ homeostasis. Quantitative high-resolution 2D-PAGE showed that the efhP deletion also affected the proteomes of both strains during growth with added Ca2+. The greatest proteome effects occurred when the pulmonary isolate was cultured in biofilms. Among the proteins that were significantly less abundant or absent in the mutant strains were proteins involved in iron acquisition, biosynthesis of pyocyanin, proteases, and stress response proteins. In support, the phenotypic responses of FRD1 ΔefhP showed that the mutant strain lost its ability to produce pyocyanin, developed less biofilm, and had decreased resistance to oxidative stress (H2O2) when cultured at high [Ca2+]. Furthermore, the mutant strain was unable to produce alginate when grown at high [Ca2+] and no iron. The effect of the ΔefhP mutations on virulence was determined in a lettuce model of infection. Growth of wild-type P. aeruginosa strains at high [Ca2+] causes an increased area of disease. In contrast, the lack of efhP prevented this Ca2+-induced increase in the diseased zone. The results indicate that EfhP is important for Ca2+ homeostasis and virulence of P. aeruginosa when it encounters host environments with high [Ca2+].


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Motivos EF Hand , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Deleção de Genes , Humanos , Lactuca/microbiologia , Pulmão/microbiologia , Dados de Sequência Molecular , Estresse Oxidativo , Doenças das Plantas/microbiologia , Ligação Proteica , Estrutura Terciária de Proteína , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Piocianina/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética
19.
Cell Calcium ; 54(5): 350-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24074964

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen causing severe acute and chronic infections. Earlier we have shown that calcium (Ca(2+)) induces P. aeruginosa biofilm formation and production of virulence factors. To enable further studies of the regulatory role of Ca(2+), we characterized Ca(2+) homeostasis in P. aeruginosa PAO1 cells. By using Ca(2+)-binding photoprotein aequorin, we determined that the concentration of free intracellular Ca(2+) ([Ca(2+)]in) is 0.14±0.05µM. In response to external Ca(2+), the [Ca(2+)]in quickly increased at least 13-fold followed by a multi-phase decline by up to 73%. Growth at elevated Ca(2+) modulated this response. Treatment with inhibitors known to affect Ca(2+) channels, monovalent cations gradient, or P-type and F-type ATPases impaired [Ca(2+)]in response, suggesting the importance of the corresponding mechanisms in Ca(2+) homeostasis. To identify Ca(2+) transporters maintaining this homeostasis, bioinformatic and LC-MS/MS-based membrane proteomic analyses were used. [Ca(2+)]in homeostasis was monitored for seven Ca(2+)-affected and eleven bioinformatically predicted transporters by using transposon insertion mutants. Disruption of P-type ATPases PA2435, PA3920, and ion exchanger PA2092 significantly impaired Ca(2+) homeostasis. The lack of PA3920 and vanadate treatment abolished Ca(2+)-induced swarming, suggesting the role of the P-type ATPase in regulating P. aeruginosa response to Ca(2+).


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/metabolismo , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Equorina/antagonistas & inibidores , Equorina/genética , Equorina/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Biologia Computacional , Genoma Bacteriano , Troca Iônica , Lantânio/farmacologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Mutação , Proteômica , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Proteins ; 80(3): 935-45, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22423359

RESUMO

Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nanomachine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices α3 and α7, with concomitant movement in the orientation of helix α7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Desoxicólico/metabolismo , Shigella flexneri/química , Shigella flexneri/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Shigella flexneri/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...