Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 7770, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833275

RESUMO

Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration field in Nb3Sn, it has been proposed to coat Nb cavities with thin film Nb3Sn multilayers with dielectric interlayers. Here, we report the growth and multi-technique characterization of stoichiometric Nb3Sn/Al2O3 multilayers with good superconducting and RF properties. We developed an adsorption-controlled growth process by co-sputtering Nb and Sn at high temperatures with a high overpressure of Sn. The cross-sectional scanning electron transmission microscope images show no interdiffusion between Al2O3 and Nb3Sn. Low-field RF measurements suggest that our multilayers have quality factor comparable with cavity-grade Nb at 4.2 K. These results provide a materials platform for the development and optimization of high-performance SIS multilayers which could overcome the intrinsic limits of the Nb cavity technology.

2.
Sci Rep ; 8(1): 15460, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337558

RESUMO

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically a dynamic instability of moving vortices in planar arrays of Josephson junctions. We show that a single vortex driven by sufficiently strong current becomes unstable and destroys superconductivity by triggering a chain reaction of self-replicating vortex-antivortex pairs forming linear of branching expanding patterns. This process can be described in terms of propagating phase cracks in long-range order with far-reaching implications for dynamic systems of interacting spins and atoms hosting magnetic vortices and dislocations.

3.
Sci Rep ; 5: 17821, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26639165

RESUMO

Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.

4.
Nat Mater ; 10(4): 255-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21430664
5.
Nat Mater ; 4(6): 470-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908959

RESUMO

Practical high-temperature superconductors must be textured to minimize the reduction of the critical current density J(gb) at misoriented grain boundaries. Partial substitution of Ca for Y in YBa(2)Cu(3)O(7-delta) has shown significant improvement in J(gb) but the mechanisms are still not well understood. Here we report atomic-scale, structural and analytical electron microscopy combined with transport measurements on 7 degrees [001]-tilt Y(0.7)Ca(0.3)Ba(2)Cu(3)O(7-delta) and YBa(2)Cu(3)O(7-delta) grain boundaries, where the dislocation cores are well separated. We show that the enhanced carrier density, higher J(gb) and weaker superconductivity depression at the Ca-doped boundary result from a strong, non-monotonic Ca segregation and structural rearrangements on a scale of approximately 1 nm near the dislocation cores. We propose a model of the formation of Ca(2+) solute atmospheres in the strain and electric fields of the grain boundary and show that Ca doping expands the dislocation cores yet enhances J(gb) by improving the screening and local hole concentration.


Assuntos
Compostos de Bário/química , Cálcio/química , Cobre/química , Cristalização/métodos , Nanoestruturas/química , Semicondutores , Ítrio/química , Compostos de Bário/análise , Cobre/análise , Condutividade Elétrica , Instalação Elétrica , Campos Eletromagnéticos , Teste de Materiais , Conformação Molecular , Nanoestruturas/análise , Nanoestruturas/ultraestrutura , Propriedades de Superfície , Temperatura , Ítrio/análise
6.
Phys Rev Lett ; 94(3): 037002, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698308

RESUMO

We report a mechanism of nonisothermal dendritic flux penetration in superconducting films. Our numerical and analytical analysis of coupled nonlinear Maxwell and thermal diffusion equations shows that dendritic flux pattern formation results from spontaneous branching of propagating flux filaments due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heating. The branching is triggered by a thermomagnetic edge instability, which causes stratification of the critical state. The resulting distribution of thermomagnetic microavalanches is not universal, because it depends on a spatial distribution of defects. Our results are in good agreement with experiments on Nb films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...