Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474825

RESUMO

Chlorella supplementation is reported to improve V˙O2max following extended supplementation periods (~3 weeks). However, there is little research on its impact over submaximal exercise intensities and following shorter supplementation regimens. This study aimed to investigate the efficacy of 6 g/day 2-day chlorella supplementation on exercise performance in healthy young adults. Twenty young healthy adults (Males = 16, Females = 4) (Age 22 ± 6 years, V˙O2max 42.7 ± 9.6 mL/(kg·min)) were recruited for this double-blinded, randomised cross-over study. Participants ingested 6 g/day of chlorella or a placebo for 2 days, with a one-week washout period between trials. Exercise testing consisted of a 20 min submaximal cycle at 40% of their work rate max (WRmax) (watts), followed by an incremental V˙O2max test. Lactate (mmol/L), heart rate (b/min), oxygen consumption (mL/(kg·min)), O2 pulse (mL/beat), respiratory exchange ratio (RER), and WRmax were compared across conditions. Following chlorella supplementation, blood lactate levels were significantly lower (p < 0.05) during submaximal exercise (3.05 ± 0.92 mmol/L vs. 2.67 ± 0.79 mmol/L) and following V˙O2max tests (12.79 ± 2.61 mmol/L vs. 11.56 ± 3.43 mmol/L). The O2 pulse was significantly higher (p < 0.05) following chlorella supplementation during submaximal (12.6 ± 3.5 mL/beat vs. 13.1 ± 3.5 mL/beat) and maximal exercise intensity (16.7 ± 4.6 mL/beat vs. 17.2 ± 4.5 mL/beat). No differences existed between conditions for oxygen consumption, RER, V˙O2max, or WRmax. A total of 2 days of 6 g/day chlorella supplementation appears to lower the blood lactate response and increase O2 pulse during both submaximal and maximal intensity exercise but did not lead to any improvements in V˙O2max.


Assuntos
Chlorella , Ácido Láctico , Masculino , Adulto Jovem , Feminino , Humanos , Adolescente , Adulto , Frequência Cardíaca , Estudos Cross-Over , Consumo de Oxigênio/fisiologia , Teste de Esforço , Suplementos Nutricionais
2.
J Diet Suppl ; 21(3): 261-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37807529

RESUMO

Spirulina supplementation has been reported to increase hemoglobin concentration as well as a variety of cardiorespiratory and lactate-based performance parameters during maximal and submaximal states of exercise. This study investigates the efficacy of supplementing a 6 g/day dosage of spirulina for 14-days in recreationally active individuals, analyzing cardiorespiratory parameters during maximal and submaximal cycling as well as the potential mechanistic role of hemoglobin augmentation. 17 recreationally active individuals (Male = 14, Female = 3, Age 23 ± 5 years, V̇O2max 43.3 ± 8.6 ml/min·kg) ingested 6 g/day of spirulina or placebo for 14-days in a double-blinded randomized crossover study, with a 14-day washout period between trials. Participants completed a 20-min submaximal cycle at 40% maximal power output (WRmax), followed by a V̇O2max test. Hemoglobin (g/L), WRmax (watts), time to fatigue (seconds), heart rate (bpm), oxygen uptake (ml/min·kg), RER and blood lactate response (mmol/L) were measured and compared between conditions. Cardiorespiratory variables were recorded at 5-min intervals and lactate was measured at 10-min intervals during the submaximal exercise. There was a significant 3.4% increase in hemoglobin concentration after spirulina supplementation in comparison to placebo (150.4 ± 9.5 g/L Vs 145.6 ± 9.4 g/L, p = 0.047). No significant differences existed between either condition in both testing protocols for V̇O2max, WRmax, time to fatigue, heart rate, oxygen uptake, RER and blood lactate response (p > 0.05). 14-days of spirulina supplementation significantly improved hemoglobin concentration but did not lead to any considerable ergogenic improvements during maximal or submaximal exercise at a 6 g/day dosage in recreationally active individuals whilst cycling.


Assuntos
Spirulina , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estudos Cross-Over , Suplementos Nutricionais , Fadiga , Ácido Láctico , Oxigênio , Método Duplo-Cego , Consumo de Oxigênio , Ciclismo/fisiologia
3.
J Diet Suppl ; 21(1): 99-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36905653

RESUMO

This study investigated the effects of chlorella supplementation on submaximal endurance, time trial performance, lactate threshold, and power indices during a repeated sprint performance test by fourteen male trained cyclists. Participants ingested 6 g/day of chlorella or placebo for 21-days in a double-blinded randomized counter-balanced cross-over design, with a fourteen-day washout period between trials. Each completed a 2-day testing period comprising a 1-hour submaximal endurance test at 55% external power output max and a 16.1 km time trial (Day-1), followed by a lactate threshold (Dmax) and repeated sprint performance tests (3 X 20 s sprints interspersed by 4-mins) (Day-2). Heart rate (b.min-1), RER, V̇O2 (ml·kg-1·min-1), lactate and glucose (mmol/L), time (secs), power output (W/kg), and hemoglobin (g/L) were compared across conditions. Following chlorella supplementation (chlorella vs. placebo for each measurement) average lactate and heart rate were significantly lower (p < 0.05) during submaximal endurance tests (1.68 ± 0.50 mmol/L vs. 1.91 ± 0.65 mmol/L & 138 ± 11b.min-1 vs. 144 ± 10b.min-1), average power and peak power (W/kg) were significantly higher during repeated sprint bouts (9.5 ± 0.7 W/kg vs. 9.0 ± 0.7 W/kg & 12.0 ± 1.2 W/kg vs. 11.4 ± 1.4 W/kg), hemoglobin significantly increased (149.1 ± 10.3 g/L) in comparison to placebo (143.4 ± 8.7 g/L) (p = 0.05). No differences existed between conditions for all oxygen consumption values, 16.1 km time trial measures and lactate threshold tests (p > 0.05). In conclusion, chlorella may pose as an additional supplement for cyclists to consider, particularly for those cyclists who want to improve their sprinting.


Assuntos
Chlorella , Humanos , Masculino , Ciclismo/fisiologia , Suplementos Nutricionais , Hemoglobinas , Ácido Láctico , Estudos Cross-Over
4.
Nutrients ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111219

RESUMO

We have read the recent systematic review and meta-analysis by Hack et al. [...].


Assuntos
Paullinia , Extratos Vegetais , Cognição
5.
Br J Nutr ; 130(2): 253-260, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36146946

RESUMO

The aim of this study was to investigate the effects of guarana supplementation on cognitive performance before and after a bout of maximal intensity cycling and to compare this to an equivalent caffeine dose. Twenty-five participants completed the randomised double-blind crossover trial by performing cognitive tests with one of three supplements, on three different days: guarana (125 mg/kg), caffeine (5 mg/kg) or placebo (65 mg/kg protein powder). After 30 min of rest, participants performed simple (SRT) and choice reaction time (CRT) tests, an immediate word recall test and Bond-Lader mood scale. This was followed by a cycling V̇O2max test, and cognitive tests were then immediately repeated. Guarana supplementation decreased CRT before exercise (407 (sd 45) ms) in comparison with placebo (421 (sd 46) ms, P = 0·030) but not caffeine (417 (sd 42) ms). SRT after exercise decreased following guarana supplementation (306 (sd 28) ms) in comparison with placebo (323 (sd 32) ms, P = 0·003) but not caffeine (315 (sd 32) ms). Intra-individual variability on CRT significantly improved from before (111·4 (sd 60·5) ms) to after exercise (81·85 (sd 43·1) ms) following guarana supplementation, and no differences were observed for caffeine and placebo (P > 0·05). Alertness scores significantly improved following guarana supplementation (63·3 (sd 13·8)) in comparison with placebo (57·4 (sd 13·4), P = 0·014) but not caffeine (61·2 (sd 12·8)). There were no changes to V̇O2max, immediate word recall or any other Bond-Lader mood scales. Guarana supplementation appears to impact several parameters of cognition. These results support the use of guarana supplementation to possibly maintain speed of attention immediately following a maximal intensity exercise test (V̇O2max).


Assuntos
Paullinia , Humanos , Cafeína/farmacologia , Cognição , Suplementos Nutricionais , Extratos Vegetais , Estudos Cross-Over
6.
Front Nutr ; 9: 865741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321288

RESUMO

Nutritional clinical trials have reported algae such as spirulina and chlorella to have the capability to improve cardiovascular risk factors, anemia, immune function, and arterial stiffness. With positive results being reported in clinical trials, researchers are investigating the potential for algae as an ergogenic aid for athletes. Initial studies found spirulina and chlorella supplementation to increase peak oxygen uptake and time to exhaustion, with the mechanistic focus on the antioxidant capabilities of both algae. However, a number of oxidative stress biomarkers reported in these studies are now considered to lack robustness and have consequently provided equivocal results. Considering the nutrient complexity and density of these commonly found edible algae, there is a need for research to widen the scope of investigation. Most recently algae supplementation has demonstrated ergogenic potential during submaximal and repeated sprint cycling, yet a confirmed primary mechanism behind these improvements is still unclear. In this paper we discuss current algae supplementation studies and purported effects on performance, critically examine the antioxidant and ergogenic differing perspectives, and outline future directions.

7.
Appl Physiol Nutr Metab ; : 1-9, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399066

RESUMO

Spirulina supplementation has been reported to improve time to exhaustion and maximal oxygen consumption (V̇O2max). However, there is limited information on its influence over the multiple intensities experienced by cyclists during training and competition. Fifteen trained males (age 40 ± 8 years, V̇O2max 51.14 ± 6.43 mL/min/kg) ingested 6 g/day of spirulina or placebo for 21 days in a double-blinded randomised crossover design, with a 14-day washout period between trials. Participants completed a 1-hour submaximal endurance test at 55% external power output max and a 16.1-km time trial (day 1), followed by a lactate threshold test and repeated sprint performance tests (RSPTs) (day 2). Heart rate (bpm), respiratory exchange ratio, oxygen consumption (mL/min/kg), lactate and glucose (mmol/L), time (seconds), power output (W), and hemoglobin (g/L) were compared across conditions. Following spirulina supplementation, lactate and heart rate were significantly lower (P < 0.05) during submaximal endurance tests (2.05 ± 0.80 mmol/L vs 2.39 ± 0.89 mmol/L and 139 ± 11 bpm vs 144 ± 12 bpm), hemoglobin was significantly higher (152.6 ± 9.0 g/L) than placebo (143.2 ± 8.5 g/L), and peak and average power were significantly higher during RSPTs (968 ± 177 W vs 929 ± 149 W and 770 ± 117 W vs 738 ± 86 W). No differences existed between conditions for all oxygen consumption values, 16.1-km time trial measures, and lactate threshold tests (P > 0.05). Spirulina supplementation reduces homeostatic disturbances during submaximal exercise and augments power output during RSPTs. Novelty: Spirulina supplementation lowers heart rate and blood lactate during ∼1-hour submaximal cycling. Spirulina supplementation elicits significant augmentations in hemoglobin and power outputs during RSPTs.

9.
Eur J Appl Physiol ; 120(12): 2657-2664, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892320

RESUMO

PURPOSE: Spirulina has previously been reported to improve high-intensity exercise performance and hemoglobin. However, spirulina's effect on arm cycling exercise has yet to be investigated. The purpose of this study was to investigate the responses of spirulina supplementation on hemoglobin and on oxygen uptake, RER and HR during seated arm cycling exercise. METHODS: In a double-blinded randomized crossover design, eleven males untrained in arm cycling ingested 6 g/day of spirulina or placebo for seven days. Seated on the Arm Crank Ergometer, each participant performed a baseline V̇O2max test, and then after supplementation, 2 × 30-min submaximal exercise bouts corresponding to 55% of their V̇O2max, followed by an incremental test to fatigue. A seven-day wash-out period was required between conditions. Oxygen uptake, RER and HR were measured continuously during exercise and hemoglobin measured prior to exercise after both conditions. RESULTS: Spirulina significantly (p < 0.05) increased Hb in comparison to Placebo (144.1 g/l ± 10.5 Vs 154.5 g/l ± 6.9). After spirulina supplementation, during the 30-min exercise bouts, oxygen uptake and HR were significantly lower (2170 ml/min ± 173 Vs 2311 ml/min ± 189 and 154 bpm ± 14 Vs 149 bpm ± 17), RER was not significantly different. In comparison to placebo, Spirulina significantly increased oxygen uptake at time of fatigue (34.10 ml/min/kg ± 6.03 Vs 37.37 ml/min/kg ± 5.98). Time taken to fatigue was not different. CONCLUSION: Spirulina supplementation significantly reduces oxygen uptake and HR during arm cycling submaximal exercise, allowing for an increased oxygen uptake during an incremental test to fatigue.


Assuntos
Braço/fisiologia , Exercício Físico/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismo , Spirulina/química , Adulto , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Fadiga/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA