Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 18(1): 3-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26248343

RESUMO

The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.


Assuntos
Interações Hospedeiro-Patógeno , Paramecium/virologia , Phycodnaviridae/fisiologia , Replicação Viral , Animais , Humanos , Substâncias Macromoleculares/ultraestrutura , Camundongos , Mimiviridae/fisiologia , Imagem Óptica , Phycodnaviridae/crescimento & desenvolvimento , Vaccinia virus/fisiologia
3.
Proc Natl Acad Sci U S A ; 111(45): 16106-11, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349393

RESUMO

Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning. The presence of ATCV-1 DNA was confirmed by quantitative PCR with ATCV-1 DNA being documented in oropharyngeal samples obtained from 40 (43.5%) of 92 individuals. The presence of ATCV-1 DNA was not associated with demographic variables but was associated with a modest but statistically significant decrease in the performance on cognitive assessments of visual processing and visual motor speed. We further explored the effects of ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intestinal tract of 9-11-wk-old mice resulted in a subsequent decrease in performance in several cognitive domains, including ones involving recognition memory and sensory-motor gating. ATCV-1 exposure in mice also resulted in the altered expression of genes within the hippocampus. These genes comprised pathways related to synaptic plasticity, learning, memory formation, and the immune response to viral exposure.


Assuntos
Comportamento Animal , Chlorella/virologia , Cognição , Laringe/virologia , Memória , Mariposas/virologia , Phycodnaviridae , Animais , Feminino , Humanos , Masculino , Camundongos
4.
PLoS One ; 9(3): e90988, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24608695

RESUMO

The PBCV-1/Chlorella variabilis NC64A system is a model for studies on interactions between viruses and algae. Here we present the first global analyses of algal host transcripts during the early stages of infection, prior to virus replication. During the course of the experiment stretching over 1 hour, about a third of the host genes displayed significant changes in normalized mRNA abundance that either increased or decreased compared to uninfected levels. The population of genes with significant transcriptional changes gradually increased until stabilizing at 40 minutes post infection. Functional categories including cytoplasmic ribosomal proteins, jasmonic acid biosynthesis and anaphase promoting complex/cyclosomes had a significant excess in upregulated genes, whereas spliceosomal snRNP complexes and the shikimate pathway had significantly more down-regulated genes, suggesting that these pathways were activated or shut-down in response to the virus infection. Lastly, we examined the expression of C. varibilis RNA polymerase subunits, as PBCV-1 transcription depends on host RNA polymerases. Two subunits were up-regulated, RPB10 and RPC34, suggesting that they may function to support virus transcription. These results highlight genes and pathways, as well as overall trends, for further refinement of our understanding of the changes that take place during the early stages of viral infection.


Assuntos
Proteínas de Algas/genética , Chlorella/genética , DNA Viral/genética , Regulação da Expressão Gênica de Plantas , RNA Mensageiro/genética , RNA de Plantas/genética , Proteínas de Algas/metabolismo , Chlorella/metabolismo , Chlorella/virologia , Ciclopentanos/metabolismo , DNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Oxilipinas/metabolismo , Phycodnaviridae/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fatores de Tempo , Transcriptoma , Replicação Viral
5.
PLoS One ; 9(3): e90989, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24608750

RESUMO

Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of the genus Chlorovirus (family Phycodnaviridae) that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection. The alignment of 17 million reads to the PBCV-1 genome allowed the construction of single-base transcriptome maps. Significant transcription was detected for a subset of 50 viral genes as soon as 7 min after infection. By 20 min post infection (p.i.), transcripts were detected for most PBCV-1 genes and transcript levels continued to increase globally up to 60 min p.i., at which time 41% or the poly (A+)-containing RNAs in the infected cells mapped to the PBCV-1 genome. For some viral genes, the number of transcripts in the latter time points (20 to 60 min p.i.) was much higher than that of the most highly expressed host genes. RNA-seq data revealed putative polyadenylation signal sequences in PBCV-1 genes that were identical to the polyadenylation signal AAUAAA of green algae. Several transcripts have an RNA fragment excised. However, the frequency of excision and the resulting putative shortened protein products suggest that most of these excision events have no functional role but are probably the result of the activity of misled splicesomes.


Assuntos
Regulação Viral da Expressão Gênica , Genoma Viral , Phycodnaviridae/genética , RNA Mensageiro/genética , RNA Viral/genética , Proteínas Virais/genética , Chlorella/genética , Chlorella/metabolismo , Chlorella/virologia , Mapeamento Cromossômico , Dosagem de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Phycodnaviridae/metabolismo , Poliadenilação , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fatores de Tempo , Transcriptoma , Proteínas Virais/metabolismo , Replicação Viral
6.
Proc Natl Acad Sci U S A ; 110(34): 13956-60, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918378

RESUMO

The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a ß-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms.


Assuntos
Proteínas do Capsídeo/química , Chlorella/virologia , DNA Ligases/química , Oligossacarídeos/química , Paramecium/microbiologia , Proteínas Virais/química , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/metabolismo , DNA Ligases/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Monossacarídeos/química , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Virais/metabolismo
7.
J Gen Virol ; 94(Pt 11): 2549-2556, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23918407

RESUMO

Most chloroviruses encode small K(+) channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K(+) channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1). Here, we used a mAb raised against the functional K(+) channel from chlorovirus MA-1D to search for the viral K(+) channel in the virus particle. The results showed that the antibody was specific and bound to the tetrameric channel on the extracellular side. The antibody reacted in a virus-specific manner with protein extracts from chloroviruses that encoded channels similar to that from MA-1D. There was no cross-reactivity with chloroviruses that encoded more diverse channels or with a chlorovirus that lacked a K(+) channel gene. Together with electron microscopic imaging, which revealed labelling of individual virus particles with the channel antibody, these results establish that the viral particles contain an active K(+) channel, presumably located in the lipid membrane that surrounds the DNA in the mature virions.


Assuntos
Phycodnaviridae/metabolismo , Canais de Potássio/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Células COS , Chlorocebus aethiops , Camundongos , Microscopia Eletrônica , Dados de Sequência Molecular , Paramecium/virologia , Phycodnaviridae/genética , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/imunologia , Proteômica , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vírion/genética , Vírion/ultraestrutura
8.
Virology ; 442(2): 101-13, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23701839

RESUMO

With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host-virus system, Chlorella variabilis NC64A and virus, PBCV-1. C. variabilis encodes 375 homologs to genes involved in RNA silencing and in response to virus infection in higher plants. Illumina RNA-Seq data showed that 325 of these homologs were expressed in healthy and early PBCV-1 infected (≤60min) cells. For each of the RNA silencing genes to which homologs were found, mRNA transcripts were detected in healthy and infected cells. C. variabilis, like higher plants, may employ certain RNA silencing pathways to defend itself against virus infection. To our knowledge this is the first examination of RNA silencing genes in algae beyond core proteins, and the first analysis of their transcription during virus infection.


Assuntos
Chlorella/virologia , Interações Hospedeiro-Parasita , Phycodnaviridae/fisiologia , Chlorella/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , Phycodnaviridae/imunologia , Interferência de RNA , Replicação Viral
9.
BMC Genomics ; 14: 158, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23497343

RESUMO

BACKGROUND: Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago, and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft genome sequences of 35 additional chloroviruses (287 - 348 Kb/319 - 381 predicted protein encoding genes) collected across the globe; they infect one of three different green algal species. These new data allowed us to analyze the genomic landscape of 41 chloroviruses, which revealed some remarkable features about these viruses. RESULTS: Genome colinearity, nucleotide conservation and phylogenetic affinity were limited to chloroviruses infecting the same host, confirming the validity of the three previously known subgenera. Clues for the existence of a fourth new subgenus indicate that the boundaries of chlorovirus diversity are not completely determined. Comparison of the chlorovirus phylogeny with that of the algal hosts indicates that chloroviruses have changed hosts in their evolutionary history. Reconstruction of the ancestral genome suggests that the last common chlorovirus ancestor had a slightly more diverse protein repertoire than modern chloroviruses. However, more than half of the defined chlorovirus gene families have a potential recent origin (after Chlorovirus divergence), among which a portion shows compositional evidence for horizontal gene transfer. Only a few of the putative acquired proteins had close homologs in databases raising the question of the true donor organism(s). Phylogenomic analysis identified only seven proteins whose genes were potentially exchanged between the algal host and the chloroviruses. CONCLUSION: The present evaluation of the genomic evolution pattern suggests that chloroviruses differ from that described in the related Poxviridae and Mimiviridae. Our study shows that the fixation of algal host genes has been anecdotal in the evolutionary history of chloroviruses. We finally discuss the incongruence between compositional evidence of horizontal gene transfer and lack of close relative sequences in the databases, which suggests that the recently acquired genes originate from a still largely un-sequenced reservoir of genomes, possibly other unknown viruses that infect the same hosts.


Assuntos
Evolução Biológica , Clorófitas/genética , Vírus de DNA/genética , Phycodnaviridae/genética , Clorófitas/virologia , Vírus de DNA/classificação , Transferência Genética Horizontal , Genoma Viral , Phycodnaviridae/classificação , Filogenia , Proteínas Virais
10.
J Virol ; 86(16): 8821-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696644

RESUMO

The 331-kbp chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) genome was resequenced and annotated to correct errors in the original 15-year-old sequence; 40 codons was considered the minimum protein size of an open reading frame. PBCV-1 has 416 predicted protein-encoding sequences and 11 tRNAs. A proteome analysis was also conducted on highly purified PBCV-1 virions using two mass spectrometry-based protocols. The mass spectrometry-derived data were compared to PBCV-1 and its host Chlorella variabilis NC64A predicted proteomes. Combined, these analyses revealed 148 unique virus-encoded proteins associated with the virion (about 35% of the coding capacity of the virus) and 1 host protein. Some of these proteins appear to be structural/architectural, whereas others have enzymatic, chromatin modification, and signal transduction functions. Most (106) of the proteins have no known function or homologs in the existing gene databases except as orthologs with proteins of other chloroviruses, phycodnaviruses, and nuclear-cytoplasmic large DNA viruses. The genes encoding these proteins are dispersed throughout the virus genome, and most are transcribed late or early-late in the infection cycle, which is consistent with virion morphogenesis.


Assuntos
Paramecium/virologia , Phycodnaviridae/química , Phycodnaviridae/genética , Proteoma/análise , Proteínas Virais/análise , Genoma Viral , Espectrometria de Massas , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA
11.
Genome Biol ; 13(5): R39, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22630137

RESUMO

BACKGROUND: Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. RESULTS: The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). CONCLUSIONS: We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.


Assuntos
Adaptação Fisiológica , Clorófitas/genética , Clorófitas/fisiologia , Temperatura Baixa , Genoma , Evolução Molecular , Genômica , Filogenia , Sintenia
12.
J Biol Chem ; 287(12): 9547-51, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22277659

RESUMO

Paramecium bursaria chlorella virus 1 (PBCV-1), a large DNA virus that infects green algae, encodes a histone H3 lysine 27-specific methyltransferase that functions in global transcriptional silencing of the host. PBCV-1 has another gene a654l that encodes a protein with sequence similarity to the GCN5 family histone acetyltransferases. In this study, we report a 1.5 Å crystal structure of PBCV-1 A654L in a complex with coenzyme A. The structure reveals a unique feature of A654L that precludes its acetylation of histone peptide substrates. We demonstrate that A654L, hence named viral polyamine acetyltransferase (vPAT), acetylates polyamines such as putrescine, spermidine, cadaverine, and homospermidine present in both PBCV-1 and its host through a reaction dependent upon a conserved glutamate 27. Our study suggests that as the first virally encoded polyamine acetyltransferase, vPAT plays a possible key role in the regulation of polyamine catabolism in the host during viral replication.


Assuntos
Acetiltransferases/metabolismo , Phycodnaviridae/enzimologia , Poliaminas/metabolismo , Proteínas Virais/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Cristalografia por Raios X , Histonas/metabolismo , Cinética , Phycodnaviridae/química , Phycodnaviridae/genética , Proteínas Virais/química , Proteínas Virais/genética
13.
Plant J ; 68(6): 977-86, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21848655

RESUMO

Chlorella viruses are a source of interesting membrane transport proteins. Here we examine a putative K(+) transporter encoded by virus FR483 and related chlorella viruses. The protein shares sequence and structural features with HAK/KUP/KT-like K(+) transporters from plants, bacteria and fungi. Yeast complementation assays and Rb(+) uptake experiments show that the viral protein, termed HAKCV (high-affinity K(+) transporter of chlorella virus), is functional, with transport characteristics that are similar to those of known K(+) transporters. Expression studies revealed that the protein is expressed as an early gene during viral replication, and proteomics data indicate that it is not packaged in the virion. The function of HAKCV is unclear, but the data refute the hypothesis that the transporter acts as a substitute for viral-encoded K(+) channels during virus infection.


Assuntos
Proteínas de Transporte de Cátions , Chlorella/virologia , Phycodnaviridae/fisiologia , Proteínas de Plantas , Potássio , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Replicação Viral
14.
Plant Cell ; 22(9): 2943-55, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20852019

RESUMO

Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.


Assuntos
Chlorella/genética , Evolução Molecular , Genoma de Planta , Simbiose , Composição de Bases , Parede Celular/metabolismo , Chlorella/virologia , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Flagelos/genética , Dados de Sequência Molecular , Família Multigênica , Reguladores de Crescimento de Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Reprodução , Análise de Sequência de DNA
15.
J Virol ; 84(17): 8829-38, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20538863

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three enzymes responsible for the synthesis of the sugar L-rhamnose: two UDP-D-glucose 4,6-dehydratases (UGDs) encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-D-glucose epimerase/reductase (UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER are expressed as late genes, which is consistent with their role in posttranslational modification of capsid proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan structures essential for virus replication and infection.


Assuntos
Mimiviridae/metabolismo , Phycodnaviridae/metabolismo , Ramnose/biossíntese , Proteínas Virais/metabolismo , Acanthamoeba castellanii/virologia , Vias Biossintéticas , Chlorella/virologia , Transferência Genética Horizontal , Mimiviridae/classificação , Mimiviridae/enzimologia , Mimiviridae/genética , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Filogenia , Proteínas Virais/genética
16.
J Virol Methods ; 167(2): 223-5, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20399229

RESUMO

The Phycodnaviridae family of viruses is diverse genetically but similar morphologically. These viruses infect eukaryotic algal hosts from both fresh and marine waters, and are an important component of aqueous environments. They play important roles in the dynamics of algal blooms, nutrient cycling, algal community structure, and possibly gene transfer between organisms. As such, it is important to identify new viruses within the Phycodnaviridae family. Biological laser printing (BioLP) was used to isolate single virus particles from solution. BioLP prints droplets containing a single virus particle directly onto a host medium, thereby enabling viruses to be isolated from unmodified samples. This manuscript demonstrates how BioLP can be used as a single-step method to separate and possibly identify viruses from complex environmental specimens.


Assuntos
Microbiologia Ambiental , Lasers , Phycodnaviridae/isolamento & purificação , Virologia/métodos , Cultura de Vírus/métodos
17.
Biochim Biophys Acta ; 1800(2): 152-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19654039

RESUMO

In contrast to all other viruses that use the host machinery located in the endoplasmic reticulum and Golgi to glycosylate their glycoproteins, the large dsDNA-containing chlorella viruses encode most, if not all, of the components to glycosylate their major capsid proteins. Furthermore, all experimental results indicate that glycosylation occurs independent of the endoplasmic reticulum and Golgi.


Assuntos
Retículo Endoplasmático/genética , Glicoproteínas/metabolismo , Glicosiltransferases/metabolismo , Complexo de Golgi/genética , Phycodnaviridae/enzimologia , Proteínas do Capsídeo/metabolismo , Chlorella/genética , Chlorella/virologia , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Modelos Moleculares , Phycodnaviridae/genética
18.
J Virol ; 82(24): 12181-90, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842725

RESUMO

Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.


Assuntos
Membrana Celular/metabolismo , Chlorella/metabolismo , Phycodnaviridae/metabolismo , Adenina/metabolismo , Transporte Biológico Ativo , Parede Celular/metabolismo , Chlorella/efeitos dos fármacos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Nistatina/farmacologia , Putrescina/metabolismo , RNA de Algas/metabolismo , Azida Sódica/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Soluções
19.
Nat Cell Biol ; 10(9): 1114-22, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19160493

RESUMO

Viruses recruit host proteins to secure viral genome maintenance and replication. However, whether they modify host histones directly to interfere with chromatin-based transcription is unknown. Here we report that Paramecium bursaria chlorella virus 1 (PBCV-1) encodes a functional SET domain histone Lys methyltransferase (HKMTase) termed vSET, which is linked to rapid inhibition of host transcription after viral infection. We show that vSET is packaged in the PBCV-1 virion, and that it contains a nuclear localization signal and probably represses host transcription by methylating histone H3 at Lys 27 (H3K27), a modification known to trigger gene silencing in eukaryotes. We also show that vSET induces cell accumulation at the G2/M phase by recruiting the Polycomb repressive complex CBX8 to the methylated H3K27 site in a heterologous system, vSET-like proteins that have H3K27 methylation activity are conserved in chlorella viruses. Our findings suggest a viral mechanism to repress gene transcription by direct modification of chromatin by PBCV-1 vSET.


Assuntos
Chlorella/genética , Epigênese Genética , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Phycodnaviridae/enzimologia , Transcrição Gênica , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Núcleo Celular/enzimologia , Núcleo Celular/genética , Chlorella/citologia , Chlorella/virologia , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Metilação , Dados de Sequência Molecular , Transporte Proteico , Proteínas Repressoras/metabolismo , Proteínas Virais/química , Vírion/enzimologia
20.
Virology ; 360(1): 209-17, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17101165

RESUMO

Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+-binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses.


Assuntos
Amidoidrolases/metabolismo , Chlorella/virologia , Hidrolases/metabolismo , Phycodnaviridae/enzimologia , Poliaminas/metabolismo , Proteínas Virais/metabolismo , Amidoidrolases/genética , Arginina/metabolismo , Composição de Bases , Escherichia coli/metabolismo , Expressão Gênica , Genes Virais/genética , Hidrolases/genética , Inseminação Artificial Homóloga , Phycodnaviridae/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...