Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Mol Cell Biol ; 20(1): 31, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399021

RESUMO

BACKGROUND: The discovery of thermostable DNA polymerases such as Taq DNA polymerase revolutionized amplification of DNA by polymerase chain reaction methods that rely on thermal cycling for strand separation. These methods are widely used in the laboratory for medical research, clinical diagnostics, criminal forensics and general molecular biology research. Today there is a growing demand for on-site molecular diagnostics; so-called 'Point-of-Care tests'. Isothermal nucleic acid amplification techniques do not require a thermal cycler making these techniques more suitable for performing Point-of-Care tests at ambient temperatures compared to traditional polymerase chain reaction methods. Strand-displacement activity is essential for such isothermal nucleic acid amplification; however, the selection of DNA polymerases with inherent strand-displacement activity that are capable of performing DNA synthesis at ambient temperatures is currently limited. RESULTS: We have characterized the large fragment of a DNA polymerase I originating from the marine psychrophilic bacterium Psychrobacillus sp. The enzyme showed optimal polymerase activity at pH 8-9 and 25-110 mM NaCl/KCl. The polymerase was capable of performing polymerase as well as robust strand-displacement DNA synthesis at ambient temperatures (25-37 °C). Through molecular evolution and screening of thousand variants we have identified a single amino-acid exchange of Asp to Ala at position 422 which induced a 2.5-fold increase in strand-displacement activity of the enzyme. Transferring the mutation of the conserved Asp residue to corresponding thermophilic homologues from Ureibacillus thermosphaericus and Geobacillus stearothermophilus also resulted in a significant increase in the strand-displacement activity of the enzymes. CONCLUSIONS: Substituting Asp with Ala at positon 422 resulted in a significant increase in strand-displacement activity of three prokaryotic A-family DNA polymerases adapted to different environmental temperatures i.e. being psychrophilic and thermophilic of origin. This strongly indicates an important role for the 422 position and the O1-helix for strand-displacement activity of DNA polymerase I. The D422A variants generated here may be highly useful for isothermal nucleic acid amplification at a wide temperature scale.


Assuntos
Substituição de Aminoácidos , DNA Polimerase I/química , DNA Polimerase I/genética , Células Procarióticas/enzimologia , Engenharia de Proteínas , Sequência de Aminoácidos , Estabilidade Enzimática , Modelos Moleculares , Domínios Proteicos , Especificidade por Substrato , Temperatura
2.
PLoS One ; 14(6): e0217713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31185017

RESUMO

N-acetylneuraminate lyases (NALs) are enzymes that catalyze the reversible cleavage and synthesis of sialic acids. They are therefore commonly used for the production of these high-value sugars. This study presents the recombinant production, together with biochemical and structural data, of the NAL from the psychrophilic bacterium Aliivibrio salmonicida LFI1238 (AsNAL). Our characterization shows that AsNAL possesses high activity and stability at alkaline pH. We confirm that these properties allow for the use in a one-pot reaction at alkaline pH for the synthesis of N-acetylneuraminic acid (Neu5Ac, the most common sialic acid) from the inexpensive precursor N-acetylglucosamine. We also show that the enzyme has a cold active nature with an optimum temperature for Neu5Ac synthesis at 20°C. The equilibrium constant for the reaction was calculated at different temperatures, and the formation of Neu5Ac acid is favored at low temperatures, making the cold active enzyme a well-suited candidate for use in such exothermic reactions. The specific activity is high compared to the homologue from Escherichia coli at three tested temperatures, and the enzyme shows a higher catalytic efficiency and turnover number for cleavage at 37°C. Mutational studies reveal that amino acid residue Asn 168 is important for the high kcat. The crystal structure of AsNAL was solved to 1.65 Å resolution and reveals a compact, tetrameric protein similar to other NAL structures. The data presented provides a framework to guide further optimization of its application in sialic acid production and opens the possibility for further design of the enzyme.


Assuntos
Aliivibrio salmonicida/enzimologia , Proteínas de Bactérias/química , Temperatura Baixa , Ácido N-Acetilneuramínico/química , Oxo-Ácido-Liases/química , Aliivibrio salmonicida/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Catálise , Estabilidade Enzimática/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Mutação de Sentido Incorreto , Oxo-Ácido-Liases/genética , Estrutura Quaternária de Proteína , Especificidade da Espécie
3.
Carbohydr Res ; 402: 133-45, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25498013

RESUMO

Moritella viscosa is a Gram-negative psychrophilic bacterium that causes winter ulcer disease in Atlantic salmon and cod. Its genome reveals that it possesses the ability to synthesize sialic acids. Indeed, sialic acid can be isolated from the bacterium and when analyzed using HPLC-MS/MS, the presence of N-acetylneuraminic acid was confirmed. Thus, the N-acetylneuraminic acid synthase NeuB from M. viscosa (MvNeuB) was recombinantly produced and characterized. The optimum pH and temperature for MvNeuB activity are 7.5 and 30 °C, respectively. The KM for N-acetylmannosamine and phosphoenolpyruvate is 18±5 and 0.8±0.2 mM, respectively. The kcat value (∼225 min(-1)) for both N-acetylmannosamine and phosphoenolpyruvate is the highest turnover number found for an enzyme in this class until the date. A calorimetric study of MvNeuB shows that the enzyme has a two-step transition peak probably reflecting the two domains these proteins consist of. MvNeuB is less stable at higher temperature and has a high catalytic activity at lower temperature compared to mesophilic counterparts. Enzymes from psychrophilic organisms are generally cold adapted meaning they can maintain adequate function near the freezing point of water. Cold adapted enzymes are catalytically more efficient at lower temperature and are more thermo-labile compared to their mesophilic counterparts. MvNeuB is a typical cold adapted enzyme and could be further explored for production of sialic acids and derivates at low temperatures.


Assuntos
Moritella/enzimologia , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Sequência de Aminoácidos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Metais/farmacologia , Dados de Sequência Molecular , Mutação , Oxo-Ácido-Liases/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Análise de Sequência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA