Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrophys J ; 864(1)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801381

RESUMO

Sgr A*, the supermassive black hole (SMBH) at the center of our Milky Way Galaxy, is known to be a variable source of X-ray, near-infrared (NIR), and submillimeter radiation and therefore a prime candidate to study the electromagnetic radiation generated by mass accretion flow onto a black hole and/or a related jet. Disentangling the power source and emission mechanisms of this variability is a central challenge to our understanding of accretion flows around SMBHs. Simultaneous multiwavelength observations of the flux variations and their time correlations can play an important role in obtaining a better understanding of possible emission mechanisms and their origin. This paper presents observations of two flares that both apparently violate the previously established patterns in the relative timing of submillimeter/NIR/X-ray flares from Sgr A*. One of these events provides the first evidence of coeval structure between NIR and submillimeter flux increases, while the second event is the first example of the sequence of submillimeter/X-ray/NIR flux increases all occurring within ~1 hr. Each of these two events appears to upend assumptions that have been the basis of some analytic models of flaring in Sgr A*. However, it cannot be ruled out that these events, even though unusual, were just coincidental. These observations demonstrate that we do not fully understand the origin of the multiwavelength variability of Sgr A* and show that there is a continued and important need for long-term, coordinated, and precise multiwavelength observations of Sgr A* to characterize the full range of variability behavior.

2.
Nature ; 552(7685): 374-377, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29211720

RESUMO

Blazars are active galactic nuclei, which are powerful sources of radiation whose central engine is located in the core of the host galaxy. Blazar emission is dominated by non-thermal radiation from a jet that moves relativistically towards us, and therefore undergoes Doppler beaming. This beaming causes flux enhancement and contraction of the variability timescales, so that most blazars appear as luminous sources characterized by noticeable and fast changes in brightness at all frequencies. The mechanism that produces this unpredictable variability is under debate, but proposed mechanisms include injection, acceleration and cooling of particles, with possible intervention of shock waves or turbulence. Changes in the viewing angle of the observed emitting knots or jet regions have also been suggested as an explanation of flaring events and can also explain specific properties of blazar emission, such as intra-day variability, quasi-periodicity and the delay of radio flux variations relative to optical changes. Such a geometric interpretation, however, is not universally accepted because alternative explanations based on changes in physical conditions-such as the size and speed of the emitting zone, the magnetic field, the number of emitting particles and their energy distribution-can explain snapshots of the spectral behaviour of blazars in many cases. Here we report the results of optical-to-radio-wavelength monitoring of the blazar CTA 102 and show that the observed long-term trends of the flux and spectral variability are best explained by an inhomogeneous, curved jet that undergoes changes in orientation over time. We propose that magnetohydrodynamic instabilities or rotation of the twisted jet cause different jet regions to change their orientation and hence their relative Doppler factors. In particular, the extreme optical outburst of 2016-2017 (brightness increase of six magnitudes) occurred when the corresponding emitting region had a small viewing angle. The agreement between observations and theoretical predictions can be seen as further validation of the relativistic beaming theory.

3.
Nature ; 496(7445): 329-33, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23598341

RESUMO

Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

4.
Science ; 330(6005): 800-4, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21051633

RESUMO

Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

5.
Nature ; 398(6724): 213-6, 1999 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-10094044

RESUMO

Comets are some of the most primitive bodies left over from the Solar System's early history. They may preserve both interstellar material and material from the proto-solar nebula, and so studies of their volatile components can provide clues about the evolution of gases and ices, as a collapsing molecular cloud transforms into a mature planetary system. Previous observations of emission from rotational transitions in molecules have averaged over large areas of the inner coma, and therefore include both molecules that sublimed from the nucleus and those that result from subsequent chemical processes in the coma Here we present high-resolution observations of emission from the molecules HNC, DCN and HDO associated with comet Hale-Bopp. Our data reveal arc-like structures-icy jets-offset from (but close to) the nucleus. The measured abundance ratios on 1-3" scales are substantially different from those on larger scales, and cannot be accounted for by models of chemical processes in the coma; they are, however, similar to the values observed in the cores of dense interstellar clouds and young stellar objects. We therefore propose that sublimation from millimetre-sized icy grains ejected from the nucleus provides access to relatively unaltered volatiles. The D/H ratios inferred from our data suggest that, by mass, Hale-Bopp (and by inference the outer regions of the early solar nebula) consists of > or =15-40% of largely unprocessed interstellar material.


Assuntos
Meteoroides , Deutério/análise , Óxido de Deutério/análise , Cianeto de Hidrogênio/análise , Gelo/análise , Isomerismo , Oxigênio/análise
6.
Nature ; 378(6552): 22-3, 1995 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-7477280
7.
Planet Space Sci ; 41(2): 91-104, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11537633

RESUMO

The fractionation factor f is important for interpreting the current escape fluxes of H and D on Venus and how the D/H ratio has evolved. The escape flux is currently governed by the two processes of charge exchange and collisional ejection by fast oxygen atoms. Using a best-fit parameterized equation for the O-H scattering angle phase function, more accurate branching ratios for the oxygen ion dissociation and including the effects of the initial energy and momentum of the ions and electrons, as well as for the hydrogen and deuterium gas, we have reanalyzed the collisional ejection process. Our analysis produces improved values for the efficiency of H and D escape as a function of the ionospheric temperature. From our results we propose the reduction of the hydrogen flux for collisional ejection from 8 to 3.5 x 10(6) cm-2 s-1. Assuming that collisions leading to escape occur mostly in the region between 200 and 400 km, the revised D/H fractionation factor due to collisional ejection is 0.47, where previously the process had been considered completely discriminating against deuterium escape (or f approximately 0.) The resulting deuterium flux is 3.1 x 10(4) cm-2 s-1, roughly 6 times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.


Assuntos
Simulação por Computador , Deutério/química , Meio Ambiente Extraterreno , Hidrogênio/química , Vênus , Atmosfera , Modelos Químicos , Método de Monte Carlo , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...