Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257648

RESUMO

To achieve optimal operation of the polarimetry-based FOCS, the light polarisation state at the input of the sensing fibre part must be close to a linear one. In the case of a FOCS deployed on a tokamak, the Joint European Torus (JET) in the present work, the long fibre optics link between the laser source and the sensing fibre modifies the polarisation in an unpredictable way, making it unclear which source polarisation state is to be set. A method for performing the necessary polarisation adjustment in a systematic way is proposed based on the FOCS analysis. The method requires performing data acquisition at two different input polarisations. Based on these measurements, the optimal laser source polarisation can be found. The method was experimentally verified using laboratory set-up and then successfully demonstrated with the FOCS installed at JET.

2.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447774

RESUMO

Determination of the poloidal magnetic field distribution in tokamaks is of prime importance for the successful operation of tokamaks. In this paper, we propose a polarization-sensitive reflectometry-based optical fiber sensor for measuring the spatial distribution of the poloidal magnetic field in tokamaks. The measurement method exploits the Rayleigh backscattering and Faraday magneto-optic effect in optical fibers. The former is an intrinsic property of optical fibers and enables distributed polarization measurements, while the latter arises in the presence of a magnetic field parallel to the optical fiber axis and rotates the polarization state of the light. When an optical fiber is looped around a toroidal section of the vacuum vessel, the local polarization rotation of the light is proportional to the local poloidal magnetic field in the tokamak. The proposed method is discussed theoretically and experimentally using the results from JET. The obtained magnetic field measurement shows a good agreement with that of the internal discrete coils. A potential solution to recover the magnetic field data from the noise-affected region of the optical measurement is proposed and is demonstrated through simulations using the JET magnetic field configuration.


Assuntos
Tecnologia de Fibra Óptica , Refração Ocular , Fibras Ópticas , Olho , Campos Magnéticos
3.
Sensors (Basel) ; 23(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299832

RESUMO

One of the main challenges in the development of a plasma diagnostic and control system for DEMO is the need to cope with unprecedented radiation levels in a tokamak during long operation periods. A list of diagnostics required for plasma control has been developed during the pre-conceptual design phase. Different approaches are proposed for the integration of these diagnostics in DEMO: in equatorial and upper ports, in the divertor cassette, on the inner and outer surfaces of the vacuum vessel and in diagnostic slim cassettes, a modular approach developed for diagnostics requiring access to the plasma from several poloidal positions. According to each integration approach, diagnostics will be exposed to different radiation levels, with a considerable impact on their design. This paper provides a broad overview of the radiation environment that diagnostics in DEMO are expected to face. Using the water-cooled lithium lead blanket configuration as a reference, neutronics simulations were performed for pre-conceptual designs of in-vessel, ex-vessel and equatorial port diagnostics representative of each integration approach. Flux and nuclear load calculations are provided for several sub-systems, along with estimations of radiation streaming to the ex-vessel for alternative design configurations. The results can be used as a reference by diagnostic designers.

4.
Opt Lett ; 48(5): 1248-1251, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857259

RESUMO

We investigate the effect of γ-radiation on temperature (T) and relative humidity (RH) sensitivities of polymer perfluorinated fiber Bragg gratings (FBGs). To this aim, different γ-radiation doses (80, 120, 160, and 520 kGy) were applied to a set of FBGs. We show that irradiated FBGs demonstrate an RH sensitivity rise with the received dose: from 13.3 pm/%RH for a pristine FBG up to 56.8 pm/%RH for a 520-kGy dose at 30℃. In contrast, T sensitivity decreases with radiation dose with a subsequent change of sign from positive to negative. Therefore, by experimental interpolation, T sensitivity can be eliminated at around a 160-kGy dose. This opens the possibility of designing an RH sensor with enhanced sensitivity, which at the same time is insensitive to T.

5.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772496

RESUMO

In this paper, we assess the effect of cryostat bridge vibrations on the plasma current measurement accuracy when using a fiber optic current sensor (FOCS) in ITER. The impact of vibrations on the light polarization state was first experimentally investigated using a miniaturized mock-up which represented a relevant part of the ITER FOCS structure. The set-up was then numerically simulated using the Jones matrix approach. Equivalent vibration matrices obtained from the experiment were used in the simulations to determine the effect of the vibrations on the FOCS accuracy. It is demonstrated that although the vibrations imply some changes in the polarization state, this effect can be strongly reduced when a proper low-birefringent spun optical fiber is used. The ITER requirement regarding the plasma current measurement accuracy can therefore be fulfilled.

6.
Opt Lett ; 48(2): 319-322, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638447

RESUMO

In this Letter, a novel, to the best of our knowledge, nondestructive method for measuring the spun fiber parameters (precursor beat length and spun period) is presented both theoretically and experimentally. The proposed technique is based on analyzing the polarization optical frequency domain reflectometer traces. Experimental results are in agreement with the theoretical predictions.

7.
Appl Opt ; 61(9): 2406-2416, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333260

RESUMO

Using a polarization-sensitive optical time domain reflectometer (OTDR), plasma current in the International Thermonuclear Experimental Reactor (ITER) can be measured by investigating the Faraday effect-induced polarization rotation in a spun fiber placed around the Vacuum Vessel. However, intrinsic birefringence and external effects like fiber bending and twisting generate unwanted polarization changes and decrease the measurement accuracy. In this paper, a simulation-based approach is developed, considering bending and twisting effects to assess the performance of the reflectometer in measuring plasma current at ITER. The results demonstrate that, for a proper choice of spun sensing fiber parameters (intrinsic beat length and spun period), the performance of the sensor satisfies ITER accuracy.

8.
Sensors (Basel) ; 23(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616637

RESUMO

We investigated the gamma radiation response of fiber Bragg gratings (FBGs) inscribed in a few-mode polymer optical fiber. The fiber had a graded-index CYTOP core of 20 µm and XYLEX overclad of 250 µm in diameter. Four FBGs were exposed to gamma radiation during four irradiation sessions at a 5.3 kGy/h dose rate. The FBGs showed a linear Bragg wavelength shift with the received dose with a mean sensitivity of -3.95 pm/kGy at 43 °C. The increased temperature provides a rise in the sensitivity: it reached -10.6 pm/kGy at 58 °C. After irradiation, the FBGs showed partial recovery, which increased with the received dose. Furthermore, the FBG's reflection power decreased with the dose. This attenuation is mainly due to insertion losses caused by the radiation induced attenuation in the CYTOP fiber. Linear response to the received dose makes CYTOP FBGs attractive for gamma radiation dosimetry. However, temperature dependence of the sensitivity should be compensated in practical applications.

9.
Sensors (Basel) ; 19(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252550

RESUMO

We present a polymer fibre Bragg grating sensor and its sensitivity to gamma radiation by observing the reflected spectral profile. The Bragg grating is femtosecond inscribed within a perfluorinated CYTOP fibre and the alteration of the Bragg wavelength corresponds to the total radiation dose received. Over a total dose of 41 k Gy, the fibre demonstrates a sensitivity of - 26.2 p m / k Gy and a resolution of 40 Gy. Under active consideration for the instrumentation of nuclear waste repositories, this study gives a better understanding of the effects of gamma radiation upon Bragg gratings in CYTOP fibres.

10.
Appl Opt ; 58(11): 2795-2802, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044879

RESUMO

In this paper, we propose a theoretical study dedicated to the assessment of plasma current measurement in magnetic confinement fusion reactors using a polarization optical time-domain reflectometer (POTDR) setup with a low-birefringence fiber used as the sensing fiber. We consider the general case of a non-uniform magnetic-field distribution along the sensing fiber. The numerical simulations, based on Jones formalism taking into account the OTDR noise, provide the measurement error as a function of the plasma current. The measurement performance is evaluated for an ITER-relevant sensor configuration. We demonstrate that a signal-to-noise ratio of 6 dB, achievable in modern POTDRs, allows us to comply with the ITER requirements for plasma currents from 0 to 1 MA, while for the 1 to 20 MA range, the level is relaxed to 4 dB.

11.
Appl Opt ; 54(19): 5983-91, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26193142

RESUMO

In this paper, we compare, by means of simulations using the Jones formalism, the performances of several optical fiber types (low birefringence and spun fibers) for the measurement of plasma current in international thermonuclear experimental reactor (ITER). The main results presented in this paper concern the minimum value of the ratio between the beat length and the spun period, which allows meeting the ITER current measurement specifications. Assuming a high-birefringence spun fiber with a beat length of 3 mm, we demonstrate that the minimum ratio between the beat length and the spun period is 4.4 when considering a 28 m long sensing fiber surrounding the vacuum vessel. This minimum ratio rises to 10.14 when a 100 m long lead fiber connecting the interrogating system to the sensing fiber is taken into account.

12.
Opt Express ; 22(12): 14666-80, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977562

RESUMO

An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

13.
Appl Opt ; 44(29): 6258-63, 2005 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16237943

RESUMO

We experimentally study the effect of ionizing radiation on the properties of long-period gratings fabricated in two pure-silica-core fibers with the arc-discharge technique. It is observed that the spectra of the gratings remain almost unchanged after being subjected to doses in excess of 0.5 MGy. The results also show that the gratings' temperature and strain sensitivities are not affected by gamma radiation.

14.
Appl Opt ; 41(4): 678-84, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11993913

RESUMO

We have studied experimentally, by using a differential interferometric technique, the effect of proton radiation on the refractive index of commercial (Schott) silicate crown glasses, BK7 and LaK9, and their radiation-resistant counterparts. The strongest effect was observed for the radiation-hard lanthanum crown LaK9G15: At a 0.65-Mrad dose the index change was approximately 3 x 10(-5). Radiation-hard glasses are used in optical systems operating in radiation environments because they prevent spectral transmission degradation in the visible. However, such glasses are not protected against radiation-induced refractive-index perturbations, and a diffraction-limited optical system based on such glasses may fail owing to radiation-induced aberrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA