Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4351, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806498

RESUMO

Low-cost detection systems are needed for the identification of microplastics (MPs) in environmental samples. However, their rapid identification is hindered by the need for complex isolation and pre-treatment methods. This study describes a comprehensive sensing platform to identify MPs in environmental samples without requiring independent separation or pre-treatment protocols. It leverages the physicochemical properties of macroporous-mesoporous silver (Ag) substrates templated with self-assembled polymeric micelles to concurrently separate and analyze multiple MP targets using surface-enhanced Raman spectroscopy (SERS). The hydrophobic layer on Ag aids in stabilizing the nanostructures in the environment and mitigates biofouling. To monitor complex samples with multiple MPs and to demultiplex numerous overlapping patterns, we develop a neural network (NN) algorithm called SpecATNet that employs a self-attention mechanism to resolve the complex dependencies and patterns in SERS data to identify six common types of MPs: polystyrene, polyethylene, polymethylmethacrylate, polytetrafluoroethylene, nylon, and polyethylene terephthalate. SpecATNet uses multi-label classification to analyze multi-component mixtures even in the presence of various interference agents. The combination of macroporous-mesoporous Ag substrates and self-attention-based NN technology holds potential to enable field monitoring of MPs by generating rich datasets that machines can interpret and analyze.

2.
Chem Soc Rev ; 52(14): 4755-4832, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37403690

RESUMO

Diversification of polymer waste recycling is one of the solutions to improve the current environmental scenario. Upcycling is a promising strategy for converting polymer waste into molecular intermediates and high-value products. Although the catalytic transformations into small molecules have been actively discussed, the methods and characteristics of upcycling into new materials have not yet been addressed. Recently, the functionalisation of polymer wastes (polyethylene terephthalate bottles, polypropylene surgical masks, rubber tires, etc.) and their conversion into new materials with enhanced functionality have been proposed as an appealing alternative for dealing with polymer waste recycling/treatment. In this review, the term 'functional upcycling' is introduced to designate any method of post-polymerisation modification or surface functionalisation without considerable polymer chain destruction to produce a new upcycled material with added value. This review explores the functional upcycling strategy with detailed consideration of the most common polymers, i.e., polystyrene, poly(methyl methacrylate), polyethylene, polypropylene, polyurethane, polyethylene terephthalate, polyvinyl chloride, polycarbonate, and rubber. We discuss the composition of plastic waste, reactivity, available physical/chemical agents for modification, and the interconnection between their properties and application. To date, upcycled materials have been successfully applied as adsorbents (including CO2), catalysts, electrode materials for energy storage and sensing, demonstrating a high added value. Importantly, the reviewed reports indicated that the specific performance of upcycled materials is generally comparable or higher than that of similar materials prepared from virgin polymer feedstock. All these advantages promote functional upcycling as a promising diversification approach against the common postprocessing methods employed for polymer waste. Finally, to identify the limitations and suggest future scope of research for each polymer, we comparatively analysed the aspects of functional upcycling with those of chemical and mechanical recycling, considering the energy and resource costs, toxicity of the used chemicals, environmental footprint, and the value added to the product.

3.
Nanoscale Horiz ; 8(4): 499-508, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36752733

RESUMO

Detection of enantiomers is a challenging problem in drug development as well as environmental and food quality monitoring where traditional optical detection methods suffer from low signals and sensitivity. Application of surface enhanced Raman scattering (SERS) for enantiomeric discrimination is a powerful approach for the analysis of optically active small organic or large biomolecules. In this work, we proposed the coupling of disposable chiral plasmonic shurikens supporting the chiral near-field distribution with SERS active silver nanoclusters for enantio-selective sensing. As a result of the plasmonic coupling, significant difference in SERS response of optically active analytes is observed. The observations are studied by numerical simulations and it is hypothesized that the silver particles are being excited by superchiral fields generated at the surface inducing additional polarizations in the probe molecules. The plasmon coupling phenomena was found to be extremely sensitive to slight variations in shuriken geometry, silver nanostructured layer parameters, and SERS excitation wavelength(s). Designed structures were able to discriminate cysteine enantiomers at concentrations in the nanomolar range and probe biomolecular chirality, using a common Raman spectrometer within several minutes. The combination of disposable plasmonic substrates with specific near-field polarization can make the SERS enantiomer discrimination a commonly available technique using standard Raman spectrometers.

4.
Ultrason Sonochem ; 92: 106245, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463784

RESUMO

Here, we investigate the band structure, density of states, photocatalytic activity, and heterojunction mechanism of WS2 with CeO2 (CeO2@WS2) as a photoactive heterostructure. In this heterostructure, CeO2's growth within WS2 layers is achieved through ultrasonicating WS2 and intercalating CeO2's precursor within the WS2 interlayers, followed by hydrothermal treatment. Through a set of density functional calculations, we demonstrate that CeO2 and WS2 form an interface through a covalent bonding that can be highly stable. The electrochemical impedance spectroscopy (EIS) found that the CeO2@WS2 heterostructure exhibits a remarkably higher conductivity (22.23 mS cm-2) compared to either WS2 and CeO2, assignable to the interface in CeO2@WS2. Furthermore, in a physically mixed CeO2-WS2 where the interaction between particles is noncovalent, the resistance was significantly higher (0.67 mS cm-2), confirming that the heterostructure in the interface is covalently bonded. In addition, Mott-Schottky and the bandgap measurements through Tauc plots demonstrate that the heterojunction in CeO2 and WS2 is type II. Eventually, the CeO2@WS2 heterostructure indicated 446.7 µmol g -1 CO2 generation from photocatalytic oxidation of a volatile organic compound (VOC), formic acid, compared to WS2 and CeO2 alone.

5.
ACS Appl Mater Interfaces ; 14(36): 41629-41639, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36043945

RESUMO

For surface-enhanced Raman spectroscopy (SERS) sensing of small molecules in the presence of living cells, biofouling and blocking of plasmonic centers are key challenges. Here, we have developed a mesoporous Au (AuM) film coated with a Ag nanoparticles (NPs) as a plasmonic sensor (AuM@Ag) to analyze aromatic thiols, which is an example of a small molecule, in the presence of a living cell strain (e.g., MDA-MB-231) as a model living system. The resulting AuM@Ag provides 0.1 nM sensitivity and high reproducibility for thiols sensing. Simultaneously, the AuM@Ag film filters large biomolecules, preventing Raman signals from overlapping produced by large biomolecules. After analysis, the AuM@Ag film undergoes recycling by the full dissolution of the Ag-thiol layer and removal of thiols from AuM. Furthermore, fresh AgNPs are formed for further SERS analysis, which circumvents the Ag oxidation issue. The ease of the AgNPs deposition allows up to 12 cycles of on-demand recycling and sensing even after utilization as a sensor in multicomponent media without enhancement and sensitivity loss. The reported mesoporous film with surface filtering ability and prominent recycling procedure promises to offer a new strategy for the detection of various small molecules in the presence of living cells.


Assuntos
Nanopartículas Metálicas , Prata , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Prata/química , Análise Espectral Raman/métodos , Compostos de Sulfidrila/química
6.
Chem Sci ; 13(19): 5650-5658, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694330

RESUMO

Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.

7.
Adv Mater ; 34(31): e2201954, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35695354

RESUMO

As second-generation mesoporous materials, mesoporous noble metals (NMs) are of significant interest for their wide applications in catalysis, sensing, bioimaging, and biotherapy owing to their structural and metallic features. The introduction of interior hollow cavity into NM-based mesoporous nanoparticles (MNs), which subtly integrate hierarchical hollow and mesoporous structure into one nanoparticle, produces a new type of hollow MNs (HMNs). Benefiting from their higher active surface, better electron/mass transfer, optimum electronic structure, and nanoconfinement space, NM-based HMNs exhibit their high efficiency in enhancing catalytic activity and stability and tuning catalytic selectivity. In this review, recent progress in the design, synthesis, and catalytic applications of NM-based HMNs is summarized, including the findings of the groups. Five main strategies for synthesizing NM-based HMNs, namely silica-assisted surfactant-templated nucleation, surfactant-templated sequential nucleation, soft "dual"-template, Kirkendall effect in synergistic template, and galvanic-replacement-assisted surfactant template, are described in detail. In addition, the applications in ethanol oxidation electrocatalysis and hydrogenation reactions are discussed to highlight the high activity, enhanced stability, and optimal selectivity of NM-based HMNs in (electro)catalysis. Finally, the further outlook that may lead the directions of synthesis and applications of NM-based HMNs is prospected.

8.
Biomater Adv ; 134: 112697, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35581073

RESUMO

The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 µg mL-1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 µg mL-1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 µg mL-1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Carbono/química , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas/metabolismo , Camundongos , Staphylococcus aureus
9.
Small ; 18(25): e2107182, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35570326

RESUMO

This article reviews recent fabrication methods for surface-enhanced Raman spectroscopy (SERS) substrates with a focus on advanced nanoarchitecture based on noble metals with special nanospaces (round tips, gaps, and porous spaces), nanolayered 2D materials, including hybridization with metallic nanostructures (NSs), and the contemporary repertoire of nanoarchitecturing with organic molecules. The use of SERS for multidisciplinary applications has been extensively investigated because the considerably enhanced signal intensity enables the detection of a very small number of molecules with molecular fingerprints. Nanoarchitecture strategies for the design of new NSs play a vital role in developing SERS substrates. In this review, recent achievements with respect to the special morphology of metallic NSs are discussed, and future directions are outlined for the development of available NSs with reproducible preparation and well-controlled nanoarchitecture. Nanolayered 2D materials are proposed for SERS applications as an alternative to the noble metals. The modern solutions to existing limitations for their applications are described together with the state-of-the-art in bio/environmental SERS sensing using 2D materials-based composites. To complement the existing toolbox of plasmonic inorganic NSs, hybridization with organic molecules is proposed to improve the stability of NSs and selectivity of SERS sensing by hybridizing with small or large organic molecules.


Assuntos
Nanoestruturas , Análise Espectral Raman , Nanoestruturas/química , Análise Espectral Raman/métodos
10.
Anal Chim Acta ; 1192: 339373, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057931

RESUMO

The enormous development and expansion of antibiotic-resistant bacterial strains impel the intensive search for new methods for fast and reliable detection of antibiotic susceptibility markers. Here, we combined DNA-targeted surface functionalization, surface-enhanced Raman spectroscopy (SERS) measurements, and subsequent spectra processing by decision system (DS) for detection of a specific oligonucleotide (ODN) sequence identical to a fragment of blaNDM-1 gene, responsible for ß-lactam antibiotic resistance. The SERS signal was measured on plasmonic gold grating, functionalized with capture ODN, ensuring the binding of corresponded ODNs. Designed DS consists of a Siamese neural network (SNN) coupled with robust statistics and Bayes decision theory. The proposed approach allows manipulation with complex multicomponent samples and predefine the desired detection level of confidence and errors, automatically determining the number of required spectra and samples. In constant to commonly used classification-type SNN, our method was applied to analyze samples with compositions previously "unknown" to DS. The detection of targeted ODN was performed with ≥99% level of confidence up to 3 × 10-12 M limit on the background of 10-10 M concentration of similar but not targeted ODNs.


Assuntos
Quimiometria , Redes Neurais de Computação , Antibacterianos/farmacologia , Teorema de Bayes , beta-Lactamas
11.
Langmuir ; 37(30): 8897-8907, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34291926

RESUMO

Modified colloids and flat surfaces occupy an important place in materials science research due to their widespread applications. Interest in the development of modifiers that adhere strongly to surfaces relates to the need for stability under ambient conditions in many applications. Diazonium salts have evolved as the primary choice for the modification of surfaces. The term "diazonics" has been introduced in the literature to describe "the science and technology of aryldiazonium salt-derived materials". The facile reduction of diazonium salts via chemical or electrochemical processes, irradiation stimuli, or spontaneously results in the efficient modification of gold surfaces. Robust gold-aryl nanoparticles, where gold is connected to the aryl ring through bonding to carbon and films modified by using diazonium salts, are critical in electronics, sensors, medical implants, and materials for power sources. Experimental and theoretical studies suggest that gold-carbon interactions constructed via chemical reactions with diazonium salts are stronger than nondiazonium surface modifiers. This invited feature article summarizes the conceptual development of recent studies of diazonium salts in our laboratories and others with a focus on the surface modification of gold nanostructures, flat surfaces and gratings, and their applications in nanomedicine engineering, sensors, energy, forensic science, and catalysis.


Assuntos
Compostos de Diazônio , Sais , Ouro , Coloide de Ouro , Propriedades de Superfície
12.
Chem Sci ; 12(11): 4154-4161, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34163688

RESUMO

The nature of plasmon interaction with organic molecules is a subject of fierce discussion about thermal and non-thermal effects. Despite the abundance of physical methods for evaluating the plasmonic effects, chemical insight has not been reported yet. In this contribution, we propose a chemical insight into the plasmon effect on reaction kinetics using alkoxyamines as an organic probe through their homolysis, leading to the generation of nitroxide radicals. Alkoxyamines (TEMPO- and SG1-substituted) with well-studied homolysis behavior are covalently attached to spherical Au nanoparticles. We evaluate the kinetic parameters of homolysis of alkoxyamines attached on a plasmon-active surface under heating and irradiation at a wavelength of plasmon resonance. The estimation of kinetic parameters from experiments with different probes (Au-TEMPO, Au-SG1, Au-SG1-TEMPO) allows revealing the apparent differences associated with the non-thermal contribution of plasmon activation. Moreover, our findings underline the dependency of kinetic parameters on the structure of organic molecules, which highlights the necessity to consider the nature of organic transformations and molecular structure in plasmon catalysis.

13.
Chem Sci ; 12(15): 5591-5598, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34163774

RESUMO

Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at -35 °C.

14.
Analyst ; 146(11): 3686-3696, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955973

RESUMO

Detection of trace amounts of poorly water-soluble pharmaceuticals or related (bio)solutions represents a key challenge in environment protection and clinical diagnostics. However, this task is complicated by low concentrations of pharmaceuticals, complex sample matrices, and sophisticated sample preparative routes. In this work, we present an alternative approach on the basis of an on-line flow extraction procedure and SERS measurements performed in a microfluidic regime. The advantages of our approach were demonstrated using ibuprofen (Ibu), which is considered as a common pharmaceutical contaminant in wastewater and should be monitored in various bioliquids. The extraction of Ibu from water to the dichloromethane phase was performed with an optimized microfluidic mixer architecture. As SERS tags, lipophilic functionalized gold multibranched nanoparticles (AuMs) were added to the organic phase. After microfluidic extraction, Ibu was captured by the functionalized AuM surface and recognized by on-line SERS measurements with up to 10-8 M detection limit. The main advantages of the proposed approach can be regarded as its simplicity, lack of need for preliminary sample preparation, high reliability, the absence of sample pretreatment, and low detection limits.


Assuntos
Microfluídica , Preparações Farmacêuticas , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman , Água
15.
Biosens Bioelectron ; 180: 113109, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677356

RESUMO

Here, we present a new family of hierarchical porous hybrid materials as an innovative tool for ultrasensitive and selective sensing of enantiomeric drugs in complex biosamples via chiral surface-enhanced Raman spectroscopy (SERS). Hierarchical porous hybrid films were prepared by the combination of mesoporous plasmonic Au films and microporous homochiral metal-organic frameworks (HMOFs). The proposed hierarchical porous substrates enable extremely low limit of detection values (10-12 M) for pseudoephedrine in undiluted blood plasma due to dual enhancement mechanisms (physical enhancement by the mesoporous Au nanostructures and chemical enhancement by HMOF), chemical recognition by HMOF, and a discriminant function for bio-samples containing large biomolecules, such as blood components. We demonstrate the effect of each component (mesoporous Au and microporous AlaZnCl (HMOF)) on the analytical performance for sensing. The growth of AlaZnCl leads to an increase in the SERS signal (by around 17 times), while the use of mesoporous Au leads to an increase in the signal (by up to 40%). In the presence of a complex biomatrix (blood serum or plasma), the hybrid hierarchical porous substrate provides control over the transport of the molecules inside the pores and prevents blood protein infiltration, provoking competition with existing plasmonic materials at the limit of detection and enantioselectivity in the presence of a multicomponent biomatrix.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Plasma , Pseudoefedrina , Estereoisomerismo
16.
ACS Appl Mater Interfaces ; 12(42): 47774-47783, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985181

RESUMO

Two-dimensional (2D) transition-metal dichalcogenides have become promising candidates for surface-enhanced Raman spectroscopy (SERS), but currently very few examples of detection of relevant molecules are available. Herein, we show the detection of the lipophilic disease marker ß-sitosterol on few-layered MoTe2 films. The chemical vapor deposition (CVD)-grown films are capable of nanomolar detection, exceeding the performance of alternative noble-metal surfaces. We confirm that the enhancement occurs through the chemical enhancement (CE) mechanism via formation of a surface-analyte complex, which leads to an enhancement factor of ≈104, as confirmed by Fourier transform infrared (FTIR), UV-vis, and cyclic voltammetry (CV) analyses and density functional theory (DFT) calculations. Low values of signal deviation over a seven-layered MoTe2 film confirms the homogeneity and reproducibility of the results in comparison to noble-metal substrate analogues. Furthermore, ß-sitosterol detection within cell culture media, a minimal loss of signal over 50 days, and the opportunity for sensor regeneration suggest that MoTe2 can become a promising new SERS platform for biosensing.


Assuntos
Molibdênio/química , Sitosteroides/análise , Telúrio/química , Teoria da Densidade Funcional , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
17.
J Phys Chem Lett ; 11(14): 5770-5776, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32603124

RESUMO

Plasmon-assisted transformations of organic compounds represent a novel opportunity for conversion of light to chemical energy at room temperature. However, the mechanistic insights of interaction between plasmon energy and organic molecules is still under debate. Herein, we proposed a comprehensive study of the plasmon-assisted reaction mechanism using unsymmetric iodonium salts (ISs) as an organic probe. The experimental and theoretical analysis allow us to exclude the possible thermal effect or hot electron transfer. We found that plasmon interaction with unsymmetrical ISs led to the intramolecular excitation of electron followed by the regioselective cleavage of C-I bond with the formation of electron-rich radical species, which cannot be explained by the hot electron excitation or thermal effects. The high regioselectivity is explained by the direct excitation of electron to LUMO with the formation of a dissociative excited state according to quantum-chemical modeling, which provides novel opportunities for the fine control of reactivity using plasmon energy.

18.
Nanoscale ; 12(27): 14581-14588, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32614008

RESUMO

Amphiphilic nanoparticles (NPs) with a spatially selective distribution of grafted functional groups have great potential in the field of sensing, advanced imaging, and therapy due to their unique surface properties. The main techniques for the spatially selective functionalization of NPs utilize the surface-assisted approaches, which significantly restrict their production throughput. In this work, we propose an alternative plasmon-based route for the spatially selective grafting of anisotropic gold nanorods (AuNRs) using iodonium and diazonium salts. Utilization of longer laser wavelengths leads to the excitation of longitudinal plasmon resonances on AuNR tips, plasmon-assisted homolysis of the C-I bond in iodonium salts and the formation of aryl radicals, which are further grafted to the tips of AuNRs. The sides of AuNRs were subsequently decorated through spontaneous diazonium surface grafting. As a result, the AuNRs with spatially separated functional groups were prepared in a versatile way, primarily in solution and without the need for a sophisticated technique of NP immobilization or surface screening. The versatility of the proposed approach was proved on three kinds of AuNRs with different architectures and wavelength positions of plasmon absorption bands. Moreover, the applicability of the prepared amphiphilic AuNRs was shown by efficient trapping and SERS sensing of amphiphilic biomolecules.

19.
ACS Appl Mater Interfaces ; 12(25): 28110-28119, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476406

RESUMO

The efficient utilization of solar energy is the actual task of the present and near future. Thus, the preparation of appropriate materials that are able to harvest and utilize the broad wavelength range of solar light (especially commonly ignored near-infrared light region-NIR) is the high-priority challenging mission. Our study provides a rationally designed two-dimensional (2D) flexible heterostructures with photocatalytic activity for the production of "clean" hydrogen under NIR illumination, with the hydrogen production rate exceeding most 2D materials and the ability to use the seawater as a starting material. The proposed design utilizes the hybrid bimetallic (Au/Pt) periodic structure, which is further covalently grafted with a metal-organic framework MIL-101(Cr). The periodic gold structure is able to efficiently support the plasmon-polariton wave and to excite the hot electrons, which is further injected in the Pt and MIL-101(Cr) layers. The Pt and MIL-101(Cr) structures provide catalytic sites, which are saturated with hot electrons and efficiently initiate water splitting and hydrogen production. The MIL-101(Cr) layer also serves for repelling generated hydrogen bubbles. The mechanistic studies reveal the catalytic role of every element of the 2D flexible heterostructures. The maximum hydrogen output was achieved under plasmon resonance excitation in the NIR range, and it could be actively controlled by the applied LED wavelength.

20.
ACS Sens ; 5(1): 50-56, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31826609

RESUMO

The chiral recognition of organic compounds is of vital importance in the field of pharmacology and medicine. Unfortunately, the common analytical routes used in this field are significantly restricted by time spent and equipment demands. In this work, we propose an unprecedented alternative, aimed at enantiomer discrimination and estimation of their concentrations in an uncomplicated and instantaneous manner. The proposed approach is based on the creation of an optical fiber probe with two pronounced plasmonic bands attributed to gold and silver. The gold or silver surfaces were grafted with moieties, able to enunciating entrap chiral amines from solution, resulting in a wavelength shift corresponding to each plasmonic metal. As a model compound of chiral amine, we chose the DOPA, also taking in mind its high medical relevancy. For chiral detection, the optical fiber probe was simply immersed in an analytical solution of DOPA, and the selective shift of gold or silver plasmon bands was observed in the reflected light depending on DOPA chirality. The observed shifts depend on the concentration of DOPA enantiomers. In the case of a racemic mixture, the shifts of both plasmonic bands emerge, making possible the simultaneous determination of enantiomer concentrations and their ratio. The analytical cycle takes several minutes and requires very simple laboratory equipment.


Assuntos
Tecnologia de Fibra Óptica/métodos , Fibras Ópticas/normas , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...