Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958911

RESUMO

The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility. Hybrid microparticles composed of vaterite and pectin (CCP) were prepared using co-precipitation. In comparison with vaterite (CC), they had a smaller diameter and pores, a greater surface area, and a negative zeta-potential. We aimed to study the cytotoxicity and mucin-dependent neutrophil-activating effect of CCP microparticles. The incorporated pectin did not influence the neutrophil damage according to a lactate dehydrogenase test. The difference in the CC- and CCP-elicited luminol or lucigenin chemiluminescence of neutrophils was insignificant, with no direct pro- or antioxidant effects from the incorporated pectin. Unlike soluble pectin, the CCP particles were ineffective at scavenging radicals in an ABAP-luminol test. The fluorescence of SYTOX Green demonstrated a CCP-stimulated formation of neutrophil extracellular traps (NETs). The pre-treatment of CC and CCP with mucin resulted in a 2.5-times-higher CL response of neutrophils to the CC-mucin than to the CCP-mucin. Thus, the incorporation of pectin into vaterite microspheres enabled an antioxidant effect to be reached when the neutrophils were activated by mucin-treated microparticles, presumably via exposed ligands.


Assuntos
Carbonato de Cálcio , Pectinas , Pectinas/farmacologia , Pectinas/metabolismo , Carbonato de Cálcio/farmacologia , Luminol/metabolismo , Mucinas/metabolismo , Ativação de Neutrófilo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Neutrófilos/metabolismo
2.
Polymers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299262

RESUMO

This article presents the results of investigations on heterophase polymerization of vinyl monomers in the presence of organosilicon compounds of different structures. On the basis of the detailed study of the kinetic and topochemical regularities of the heterophase polymerization of vinyl monomers, the conditions for the synthesis of polymer suspensions with a narrow particle-size distribution using a one-step method have been determined.

3.
Antioxidants (Basel) ; 11(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421449

RESUMO

Hyperglycemia in diabetes mellitus induces modification of proteins by glucose and its derivative methylglyoxal (MG). Neutrophils perform their bactericidal activity mainly via reactive halogen (RHS) and oxygen (ROS) species generation catalyzed by myeloperoxidase (MPO) stored in neutrophil azurophilic granules (AGs) and membrane NADPH oxidase, respectively. Herein, we study the binding of human serum albumin (HSA) modified with MG (HSA-MG) to MPO and its effects on MPO activity and release by neutrophils. Peroxidase activity of MPO was registered by oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and chlorinating activity by decolorization of Celestine blue B dye. Binding of HSA-MG to MPO was studied by affinity chromatography, disc-electrophoresis, ligand Western blotting and enzyme-linked solid phase immunoassay using monoclonal antibodies (mAbs) to MPO. ROS and RHS generation were detected by lucigenin (Luc) and luminol (Lum) chemiluminescence (CL), respectively. Neutrophil degranulation was assessed by flow cytometry using fluorescent labeled antibodies to the marker proteins CD63 from AGs and CD11b from peroxidase-negative granules (PNGs). NETosis was assayed by quantifying DNA network-like structures (NET-like structures) in blood smears stained by Romanowsky. HSA-MG bound to MPO, giving a stable complex (Kd = 1.5 nM) and competing with mAbs, and non-competitively inhibited peroxidase and chlorinating MPO activity and induced degranulation of PNGs but not of AGs. HSA-MG enhanced Luc-CL per se or following PMA, unlike Lum-CL, and did not affect spontaneous or PMA-stimulated NETosis. Thus, HSA modified under hyperglycemia-like conditions stimulated NADPH oxidase of neutrophils but dampened their functions dependent on activity of MPO, with no effect on its release via degranulation or NETosis. This phenomenon could underlie the downregulation of bactericidal activity of MPO and neutrophils, and hence of innate immunity, giving rise to wound healing impairment and susceptibility to infection in patients with hyperglycemia.

4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142492

RESUMO

Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite-mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of -1 ± 1 mV and -7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL-1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1ß, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1-10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin-vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.


Assuntos
Luminol , Neutrófilos , Cálcio/metabolismo , Carbonato de Cálcio/farmacologia , Oxalato de Cálcio/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Íons/metabolismo , Luminol/química , Magnésio/metabolismo , Mucinas/metabolismo , Neutrófilos/metabolismo , Oxidantes/farmacologia , Fosfatos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Zimosan/farmacologia
5.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144584

RESUMO

Cationic antimicrobial peptides (CAMPs) are considered as next-generation antibiotics with a lower probability of developing bacterial resistance. In view of potential clinical use, studies on CAMP biocompatibility are important. This work aimed to evaluate the behavior of synthetic short CAMPs (designed using bioinformatic analysis of the medicinal leech genome and microbiome) in direct contact with blood cells and plasma. Eight CAMPs were included in the study. Hemolysis and lactate dehydrogenase assays showed that the potency to disrupt erythrocyte, neutrophil and mononuclear cell membranes descended in the order pept_1 > pept_3 ~ pept_5 > pept_2 ~ pept_4. Pept_3 caused both cell lysis and aggregation. Blood plasma and albumin inhibited the CAMP-induced hemolysis. The chemiluminescence method allowed the detection of pept_3-mediated neutrophil activation. In plasma coagulation assays, pept_3 prolonged the activated partial thromboplastin time (APTT) and prothrombin time (at 50 µM by 75% and 320%, respectively). Pept_3 was also capable of causing fibrinogen aggregation. Pept_6 prolonged APTT (at 50 µM by 115%). Pept_2 was found to combine higher bactericidal activity with lower effects on cells and coagulation. Our data emphasize the necessity of investigating CAMP interaction with plasma.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Albuminas , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Sanguíneas , Fibrinogênio , Hemólise , Humanos , Lactato Desidrogenases , Compostos Organoplatínicos , Plasma
6.
ACS Appl Mater Interfaces ; 14(16): 18866-18876, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35418224

RESUMO

Stretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures. Moreover, high weight concentrations of MWCNTs are often required for high performance of the nanocomposites in electronic applications. Inspired by the recent drop in the SWCNT price, we have focused on fabrication of elastic nanocomposites with very low concentrations of SWCNTs to reduce the cost of nanocomposites further. In this work, we use a fast method of coagulation (antisolvent) precipitation to fabricate elastic composites based on thermoplastic polyurethane (TPU) and SWCNTs with a homogeneous distribution of SWCNTs in bulk TPU. Applicability of the approach is confirmed by extra low percolation threshold of 0.006 wt % and, as a consequence, by the state-of-the-art performance of fabricated elastic nanocomposites at very low SWCNT concentrations for strain sensing (gauge factor of 82 at 0.05 wt %) and EMI shielding (efficiency of 30 dB mm-1 at 0.01 wt %).

7.
Oxid Med Cell Longev ; 2021: 8089696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721760

RESUMO

An understanding of the consequences of oxidative/halogenative stress triggered by neutrophil activation is impossible without considering NETosis. NETosis, formation of neutrophil extracellular traps (NETs), is known to promote microthrombus formation and impair wound healing in type 2 diabetes mellitus (T2DM) patients. Therefore, there is a need to search for drugs and treatment approaches that could prevent excessive NET formation. We aimed to evaluate the effect of vitamin D3 in combination with omega-3 polyunsaturated fatty acids (vitamin D3/omega-3 PUFAs) on NETosis in T2DM patients with purulent necrotizing lesions of the lower extremities. Patients and healthy subjects had vitamin D3 deficiency. Patients received, beyond standard treatment, 6000 IU of vitamin D3 and 480 mg of omega-3 PUFAs, and healthy subjects 1000 IU of vitamin D3 and 240 mg of omega-3 PUFAs daily for seven days. Neutrophil activation in ex vivo blood by phorbol-12-myristate-13-acetate (PMA) was used as a NETosis model. The percentage of blood NETs relative to leukocytes (NETbackground) before vitamin D3/omega-3 PUFA supplementation was 3.2%-4.9% in healthy subjects and 1.7%-10.8% in patients. These values rose, respectively, to 7.7%-9.1% and 4.0%-17.9% upon PMA-induced NETosis. In addition, the leukocyte count decreased by 700-1300 per 1 µL in healthy subjects and 700-4000 per 1 µL in patients. For both patients and healthy subjects, taking vitamin D3/omega-3 PUFAs had no effect on NETbackground but completely inhibited PMA-induced NET formation, though neutrophils exhibited morphological features of activation. Also, leukocyte loss was reduced (to 500 per 1 µL). For patients on standard treatment alone, changes occurred neither in background NETs and leukocytes nor in their amount after PMA stimulation. The decreased ability of neutrophils to generate NETs, which can be achieved by vitamin D3/omega-3 PUFA supplementation, could have a positive effect on wound healing in T2DM patients and reduce the incidence and severity of complications.


Assuntos
Colecalciferol/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Armadilhas Extracelulares/efeitos dos fármacos , Ácidos Graxos Ômega-3/uso terapêutico , Úlcera da Perna/tratamento farmacológico , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Deficiência de Vitamina D/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Células Cultivadas , Colecalciferol/efeitos adversos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Quimioterapia Combinada , Ácido Eicosapentaenoico/uso terapêutico , Armadilhas Extracelulares/metabolismo , Ácidos Graxos Ômega-3/efeitos adversos , Feminino , Humanos , Úlcera da Perna/sangue , Úlcera da Perna/diagnóstico , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Projetos Piloto , Fatores de Tempo , Resultado do Tratamento , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/diagnóstico , Cicatrização/efeitos dos fármacos
8.
Macromol Biosci ; 21(5): e2000402, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759338

RESUMO

Porous polymer materials derived from poly(ethylene glycol dimethacrylate) (poly-EGDMA) and antibiotic containing polylactide (PLA) are obtained for the first time. Porous poly-EGDMA monoliths with a system of open interconnected pores are synthesized by a visible light-induced radical polymerization of EGDMA in the presence of 70 wt% of porogenic agent, e.g., 1-butanol, 1-hexanol, 1-octanol, or cyclohexanol. The porosity of the obtained polymers is 75-78%. A modal pore size depends on the nature of the porogen and varies from 0.5 µm (cyclohexanol) to 12 µm (1-butanol). The polymer matrix made with 1-butanol features the presence of pores ranging from 1 to 100 µm. The pore surface of poly-EGDMA matrices is inlayered with poly-D,L-lactide (Mn  23 × 103  Da, PDI 1.31). The PLA-modified poly-EGDMA retains a porous structure that is similar to the initial poly-EGDMA but with improved strength characteristics. The presence of antibiotic containing PLA ensures a high and continuous antibacterial activity of the hybrid polymeric material for 7 days. The nontoxicity of all the porous matrices studied makes them promising for clinical tests as osteoplastic materials.


Assuntos
Antibacterianos/química , Metacrilatos/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Alicerces Teciduais , Materiais Revestidos Biocompatíveis , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
9.
Mater Sci Eng C Mater Biol Appl ; 108: 110382, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924010

RESUMO

Venous thromboembolism is a frequent complication occurring in patients suffering from neoplastic diseases. Since neutrophil extracellular traps (NETs) play an important role both in the development of the tumor growth process and in inducing complications such as thrombosis, indubitably the investigation of the effect of antitumor drugs on the formation of neutrophil extracellular traps and on the ability of such drugs to prevent NETs contribution on carcinogenesis is of great interest. In the present work we studied the effect of 5-fluorouracil (5FU) and its shielded -by amphiphilic poly-N-vinylpyrrolidone (Amph-PVP) nanoparticles-nanoscaled polymeric form on the activation of human neutrophils under ex vivo conditions. Free 5FU at concentrations varying from 0.01 to 10 mg/ml was found to cause a significant (two to three times) and rapid (after 20 min) increase in the total amount of NETs in the blood. Importantly, when 5FU-loaded Amph-PVP nanoparticles were studied under the same conditions, the appearance of NETs in the blood was completely blocked providing strong evidence of their potential as delivery system for 5FU in antitumor therapy.


Assuntos
Armadilhas Extracelulares/metabolismo , Fluoruracila/farmacologia , Nanopartículas/química , Polímeros/química , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Medições Luminescentes , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Povidona/química , Tensoativos/química
10.
Mol Cell Biochem ; 464(1-2): 119-130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31754972

RESUMO

Myeloperoxidase (MPO), an oxidant-producing enzyme, stored in azurophilic granules of neutrophils has been recently shown to influence red blood cell (RBC) deformability leading to abnormalities in blood microcirculation. Native MPO is a homodimer, consisting of two identical protomers (monomeric MPO) connected by a single disulfide bond but in inflammatory foci as a result of disulfide cleavage monomeric MPO (hemi-MPO) can also be produced. This study investigated if two MPO isoforms have distinct effects on biophysical properties of RBCs. We have found that hemi-MPO, as well as the dimeric form, bind to the glycophorins A/B and band 3 protein on RBC's plasma membrane, that lead to reduced cell resistance to osmotic and acidic hemolysis, reduction in cell elasticity, significant changes in cell volume, morphology, and the conductance of RBC plasma membrane ion channels. Furthermore, we have shown for the first time that both dimeric and hemi-MPO lead to phosphatidylserine (PS) exposure on the outer leaflet of RBC membrane. However, the effects of hemi-MPO on the structural and functional properties of RBCs were lower compared to those of dimeric MPO. These findings suggest that the ability of MPO protein to influence RBC's biophysical properties depends on its conformation (dimeric or monomeric isoform). It is intriguing to speculate that hemi-MPO appearance in blood during inflammation can serve as a regulatory mechanism addressed to reduce abnormalities on RBC response, induced by dimeric MPO.


Assuntos
Membrana Eritrocítica/enzimologia , Peroxidase/metabolismo , Multimerização Proteica , Membrana Eritrocítica/patologia , Células HL-60 , Humanos , Inflamação/enzimologia , Inflamação/patologia , Isoenzimas/metabolismo , Fosfatidilserinas/metabolismo
11.
Bioelectromagnetics ; 39(2): 144-155, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29194676

RESUMO

The growing use of extremely high-frequency electromagnetic radiation (EHF EMR) in information and communication technology and in biomedical applications has raised concerns regarding the potential biological impact of millimeter waves (MMWs). Here, we elucidated the effects of MMW radiation on neutrophil activation induced by opsonized zymosan or E. coli in whole blood ex vivo. After agonist addition to blood, two samples were prepared. A control sample was incubated at ambient conditions without any treatment, and a test sample was exposed to EHF EMR (32.9-39.6 GHz, 100 W/m2 ). We used methods that allowed us to assess the functional status of neutrophils immediately after exposure: oxidant production levels were measured by luminol-dependent chemiluminescence, and morphofunctional changes to neutrophils were observed in blood smears. Results revealed that the response of neutrophils to both agonists was intensified if blood was exposed to MMW radiation for 15 min. Neutrophils were intact in both the control and irradiated samples if no agonist was added to blood before incubation. Similarly, exposing suspensions of isolated neutrophils in plasma to MMW radiation enhanced cell response to both zymosan and E. coli. Heating blood samples was shown to be the primary mechanism underlying enhanced EHF EMR-induced oxidant production by neutrophils in response to particulate agonists. Bioelectromagnetics. 39:144-155, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Radiação Eletromagnética , Neutrófilos/efeitos da radiação , Escherichia coli/fisiologia , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Neutrófilos/microbiologia , Peroxidase/metabolismo , Zimosan/farmacologia
12.
Hum Antibodies ; 24(3-4): 39-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28128763

RESUMO

INTRODUCTION: Intravenous immunoglobulin (IVIG) has been widely used to treat various conditions, including inflammatory and autoimmune diseases. IVIG has been shown to have a direct influence on neutrophils, eosinophils and lymphocytes. However, many aspects IVIG's effect on neutrophils activation still remain unknown. OBJECTIVE: To evaluate the effect of IVIG on PMA-induced activation of neutrophils, with and without priming with TNF-α, in a series of in vitro experiments performed on whole blood. RESULTS: Our data coincided with well-known literature indicating that the effect of phorbol 12-myristate 13-acetate (PMA) on human leukocytes includes activation of neutrophils, monocytes and eosinophils, increase of chemiluminescence (CL) and induction of netosis, resulting in assembly of traps. In presence of IVIG (10 mg/mL), CL was reduced by 25% in response to PMA compared to PMA-induced leukocyte activation without IVIG. Decreasing IVIG concentration to 1 mg/mL and below did not inhibit PMA-induced activation of CL.PMA-induced activation after TNF-α priming resulted in approximately 50% increase of amplitude of CL response to PMA. Moreover, maximum CL was reached by minute 5, which was more rapid than in the absence of TNF-α-priming (in this case maximum CL was reached by minute 15).The IVIG concentrations did not affect morphological changes of leukocytes after sequential addition of TNF-α and PMA. IVIG had no effect on leukocyte content and on PMA-induced CL of primed leukocytes.Addition of IVIG under TNF-α priming significantly increased the number of traps in the smears in response to PMA activation. Of note, such an increase in the number of traps was depended on the IVIG concentration in plasma. CONCLUSION: In conclusion, we suggest that IVIG is able to reduce the degradation of traps under priming with TNF-α. Moreover, IVIG might switch the activation of primed leukocytes to netosis.


Assuntos
Imunoglobulinas Intravenosas/farmacologia , Leucócitos/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Relação Dose-Resposta Imunológica , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Voluntários Saudáveis , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Medições Luminescentes , Ativação Linfocitária/efeitos dos fármacos , Cultura Primária de Células
13.
Arch Biochem Biophys ; 591: 87-97, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26714302

RESUMO

Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also bind to cellular surface proteins. We found that band 3 protein and glycophorins A and B were the key MPO-binding targets of human red blood cells (RBCs). The interaction of MPO with RBC proteins was mostly electrostatic in nature because it was inhibited by desialation, exogenic sialic acid, high ionic strength, and extreme pH. In addition, MPO failed to interfere with the lectin-induced agglutination of RBCs, suggesting a minor role of glycan-recognizing mechanisms in MPO binding. Multiple biophysical properties of RBCs were altered in the presence of native (i.e., not hypochlorous acid-damaged) MPO. These changes included transmembrane potential, availability of intracellular Ca(2+), and lipid organization in the plasma membrane. MPO-treated erythrocytes became larger in size, structurally more rigid, and hypersensitive to acidic and osmotic hemolysis. Furthermore, we found a significant correlation between the plasma MPO concentration and RBC rigidity index in type-2 diabetes patients with coronary heart disease. These findings suggest that MPO functions as a mediator of novel regulatory mechanism in microcirculation, indicating the influence of MPO-induced abnormalities on RBC deformability under pathological stress conditions.


Assuntos
Membrana Eritrocítica/metabolismo , Eritrócitos/citologia , Eritrócitos/fisiologia , Hemólise/fisiologia , Fluidez de Membrana/fisiologia , Peroxidase/metabolismo , Sítios de Ligação , Tamanho Celular , Células Cultivadas , Membrana Eritrocítica/ultraestrutura , Humanos , Potenciais da Membrana/fisiologia , Ligação Proteica
14.
Toxicol Lett ; 221(2): 137-45, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23747415

RESUMO

Reduction of thrombogenicity of carbon nanotubes is an important prerequisite for their biomedical use. We assessed the thrombogenic activity of carboxylated single-walled carbon nanotubes (c-SWCNTs) and covalently PEGylated c-SWNCTs (PEG-SWCNTs) by testing the clotting time of platelet poor plasma and platelet aggregation in whole blood samples, and evaluated the impact of human serum albumin on thrombogenicity of carbon nanotubes. Both types of SWCNTs exhibited considerable thrombogenic activity. SWCNTs accelerated plasma clotting, with a lesser effect seen for PEG-SWCNTs. Treatment of SWCNTs with albumin did not affect the SWCNT-induced shortening of clotting time. In whole blood, no discernible differences in the effect of c-SWCNTs and PEG-SWCNTs on platelets were observed. Upon addition of SWCNTs to blood, dose- and time-dependent formation of agglomerates of nanotubes and platelets was demonstrated. Pretreatment of SWCNTs with albumin reduced the platelet aggregation: the number of single platelets increased, and the size of platelet-SWCNT agglomerates decreased dramatically. Hence, addition of albumin may serve to attenuate the adverse, thrombogenic effect of CNTs.


Assuntos
Nanotubos de Carbono/química , Albumina Sérica/farmacologia , Trombose/induzido quimicamente , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Tempo de Tromboplastina Parcial
15.
Toxicol Appl Pharmacol ; 264(1): 131-42, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22884993

RESUMO

Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.


Assuntos
Ácido Hipocloroso/metabolismo , Nanotubos de Carbono/química , Ativação de Neutrófilo/efeitos dos fármacos , Peroxidase/metabolismo , Polietilenoglicóis/química , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação/etiologia , Inflamação/patologia , Injeções Intraperitoneais , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oxidantes/metabolismo , Cavidade Peritoneal , Hipoclorito de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...