Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Materials (Basel) ; 16(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068085

RESUMO

Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.

3.
Sci Rep ; 13(1): 22175, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092858

RESUMO

The latest trends in improving the performance properties of soils contaminated with potentially toxic elements (PTEs) relate to the possibility of using raw additives, including halloysite nanotubes (HNTs) due to eco-friendliness, and inexpensiveness. Lolium perenne L. was cultivated for 52 days in a greenhouse and then moved to a freezing-thawing chamber for 64 days. HNT addition into PTE-contaminated soil cultivated with grass under freezing-thawing conditions (FTC) was tested to demonstrate PTE immobilization during phytostabilization. The relative yields increased by 47% in HNT-enriched soil in a greenhouse, while under FTC decreased by 17% compared to the adequate greenhouse series. The higher PTE accumulation in roots in HNT presence was evident both in greenhouse and chamber conditions. (Cr/Cd and Cu)-relative contents were reduced in soil HNT-enriched-not-FTC-exposed, while (Cr and Cu) in HNT-enriched-FTC-exposed. PTE-immobilization was discernible by (Cd/Cr/Pb and Zn)-redistribution into the reducible fraction and (Cu/Ni and Zn) into the residual fraction in soil HNT-enriched-not-FTC-exposed. FTC and HNT facilitated transformation to the residual fraction mainly for Pb. Based on PTE-distribution patterns and redistribution indexes, HNT's role in increasing PTE stability in soils not-FTC-exposed is more pronounced than in FTC-exposed compared to the adequate series. Sphingomonas, Acidobacterium, and Mycobacterium appeared in all soils. HNTs mitigated FTC's negative effect on microbial diversity and increased Planctomycetia abundance.


Assuntos
Metais Pesados , Poluentes do Solo , Argila , Metais Pesados/análise , Cádmio , Congelamento , Chumbo , Poluentes do Solo/análise , Solo , Monitoramento Ambiental
4.
Environ Geochem Health ; 45(11): 7459-7490, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501044

RESUMO

Coal mining activities are causing an extensive range of environmental issues at both operating and abandoned mine sites. It is one of the most environmentally destructive practices, with the capability to eliminate fauna and flora, impact the groundwater system, and pollute the soil, air, and water. The Czech Republic relies almost exclusively on coal as its primary domestic source of energy. The combined reserves of hard and brown coals in this country are 705 million tons. About 50 million tons of coal is produced annually, making it the 14th biggest producer in the world. Soil degradation is an inevitable outcome of the coal production from surface coal mining procedures in the Czech Republic. Significant changes have taken place in soil productivity, hydraulic characteristics, horizon, and texture as a result of soil pollution, bioturbation, compaction, and weathering. The current review has evaluated the impact of reclamation and coal mining on soil characteristics, including biological, chemical, and physical properties. Additionally, the study has outlined the process of soil formation in reclamation areas in the Czech Republic. In nutshell, research gaps and future directions in understanding coal mining areas and their influences on soils in the Czech Republic are identified.


Assuntos
Minas de Carvão , Poluentes do Solo , Solo/química , República Tcheca , Monitoramento Ambiental/métodos , Carvão Mineral/análise , Mineração , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
5.
Sci Total Environ ; 882: 163634, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088391

RESUMO

The article presents the effect of a combined amendment, i.e., biochar+compost (BC), on the process of Cd, Cu, Ni, Pb and Zn immobilization in soil cultivated with L. perenne under freezing and thawing conditions (FTC). In particular, the speciation analysis of the examined elements in phytostabilized soils based on their response using the sequential extraction, and the variability of the soil microbiome using 16S rRNA gene amplicon sequencing were systematically assessed. Metal stability in soils was evaluated by the reduced distribution index (Ir). Plants were grown in pots for 52 days under greenhouse conditions. After termination, phytostabilization was continued in a temperature chamber for 64 days to provide FTC. As a result, it was noted that biomass yield of L. perenne was promoted by BC (39 % higher than in the control pots) and reduced by FTC (45 % lower than in the BC-enriched soil not exposed to FTC). An efficacious level of phytostabilization, i.e., higher content of heavy metals in plant roots, was found in the BC-enriched soil, regardless of the changes in soil temperature conditions. BC improved soil pH before applying FTC more than after applying FTC. BC had the greatest impact on increasing Cu stability by redistributing it from the F1 and F2 fractions to the F3 and F4 fractions. For most metals, phytostabilization under FTC resulted in an increase in the proportion of the F1 fraction and a decrease in its stability. Only for Pb and Zn, FTC had greater impact on their stability than BC addition. In all soil samples, the core genera with about 2-3 % abundances were Sphingomonas sp. and Mycobacterium sp. FTC favored the growth of Bacteroidetes and Proteobacteria in soil. Microbial taxa that coped well with FTC but only in the absence of BC were Rhodococcus, Alkanindiges sp., Flavobacterium sp., Williamsia sp. Thermomonas sp.


Assuntos
Compostagem , Metais Pesados , Poluentes do Solo , Solo/química , Chumbo/análise , RNA Ribossômico 16S , Temperatura , Metais Pesados/análise , Carvão Vegetal/química , Poluentes do Solo/análise
6.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499826

RESUMO

Growing awareness of the risks posed by pollution of the soil environment is leading to the development of new remediation strategies. The technique of aided phytostabilization, which involves the evaluation of new heavy-metal (HM)-immobilizing amendments, together with appropriately selected plant species, is a challenge for environmental protection and remediation of the soil environment, and seems to be promising. In this study, the suitability of bentonite for the technique of aided phytostabilization of soils contaminated with high HM concentrations was determined, using a mixture of two grass species. The HM contents in the tested plants and in the soil were determined by flame atomic absorption spectrometry. The application of bentonite had a positive effect on the biomass of the tested plants, and resulted in an increase in soil pH. The concentrations of copper, nickel, cadmium, lead and chromium were higher in the roots than in the above-ground parts of the plants, especially when bentonite was applied to the soil. The addition of the analyzed soil additive contributed significantly to a decrease in the levels of zinc, copper, cadmium and nickel in the soil at the end of the experiment. In view of the above, it can be concluded that the use of bentonite in the aided phytostabilization of soils polluted with HMs, is appropriate.

7.
Sci Rep ; 12(1): 22260, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564508

RESUMO

Aerobic granular sludge (AGS) is a proven resource for the recovery of biopolymers like alginate-like polymers (ALP). This is the first report on the dynamics of ALP produced by AGS (ALP-AGS) in a full-scale wastewater treatment plant (WWTP), optimization of ALP recovery from AGS, and adsorption of cadmium (Cd2+) by ALP. Recovery of ALP was highest when using 120 mL of 0.2 M Na2CO3 at 70 °C for 45 min. Seasonal (1.5 years, over 3100 cycles) and intra-cycle changes in ALP-AGS in the WWTP were monitored. The ALP content in AGS increased in the transition period between winter and spring, reaching over 150 mg/g MLSS. In the batch reactor cycle, the ALP-AGS level peaked 2 h after the start of aeration (mean peak level: 120 mg/g MLSS), then decreased about two-fold by the end of the cycle. The ALP-AGS had a small surface area and a lamellar structure with crystalline outgrowths. The optimal conditions of Cd2+ adsorption with ALP were a dosage of 7.9 g d.m./L, a pH of 4-8, and an equilibrium time of 60 min. Carboxyl and hydroxyl groups were the key functional groups involved in Cd2+ adsorption. According to the Sips model, the maximum Cd2+ adsorption capacity of ALP-AGS was 29.5 mg/g d.m., which is similar to that of commercial alginate. AGS is a richer source of ALP than activated sludge, which ensures the cost-effectiveness of ALP recovery and increases the sustainability of wastewater treatment. Information on the chemical properties and yields of ALP from full-scale WWTPs is important for downstream applications with the recovered ALP.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Cádmio , Eliminação de Resíduos Líquidos , Polímeros , Alginatos , Adsorção , Reatores Biológicos , Aerobiose
8.
Chemosphere ; 308(Pt 2): 136332, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088975

RESUMO

The progress of engineering technologies highly influences the development of methods that lead to the condition improvement of areas contaminated with heavy metals (HMs). The aided phytostabilization fits into this trend, and was used to evaluate HM-immobilization effectiveness in phytostabilized soils under variable temperatures by applying 16 freezing-thawing cycles (FTC). Diatomite amendment and Lolium perenne L., also were applied. Cd/Ni/Cu/Pb/Zn each total content in phytostabilized soils were determined, along with the verification for each metal of its distribution in four extracted fractions (F1 ÷ F4) from soils. Based on changes in HM distribution, each metal's stability was estimated. Moreover, HM accumulation in plant roots and stems and soil microbial composition were investigated. Independently of the experimental variant (no-FTC-exposure or FTC-exposure), the above-ground biomass yields in the diatomite-amended series were higher as compared to the corresponding control series. The evident changes in Pb/Zn-bioavailability were observed. The metal stability increase was mainly attributed to metal concentration decreasing in the F1 fraction and increasing in the F4 fraction, respectively. Diatomite increased Cd/Zn-stability in not-FTC-exposed-phytostabilized soils. FTC-exposure favorably influenced Pb/Zn stability. Diatomite increased soil pH values and Cd/Ni/Cu/Zn-bioaccumulation (except Pb) in roots than in stems (in both experimental variants). FTC-exposure influenced soil microbial composition, increasing bacteria abundance belonging to Actinobacteria, Gammaproteobacteria, and Sphingobacteria. At the genus level, FTC exposure significantly increased the abundances of Limnobacter sp., Tetrasphaera sp., Flavobacterium sp., and Dyella sp. Independently of the experimental variant, Sphingomonas sp. and Mycobacterium sp., which have a tolerance to HM contamination, were core bacterial groups, comprising about 6 ÷ 7% of all soil bacteria.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Cádmio , Terra de Diatomáceas , Chumbo , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
9.
Materials (Basel) ; 15(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683097

RESUMO

In the present paper the effectiveness of biochar-aided phytostabilization of metal/metalloid-contaminated soil under freezing-thawing conditions and using the metal tolerating test plant Lolium perenne L. is comprehensively studied. The vegetative experiment consisted of plants cultivated for over 52 days with no exposure to freezing-thawing in a glass greenhouse, followed by 64 days under freezing-thawing in a temperature-controlled apparatus and was carried out in initial soil derived from a post-industrial urban area, characterized by the higher total content of Zn, Pb, Cu, Cr, As and Hg than the limit values included in the classification provided by the Regulation of the Polish Ministry of Environment. According to the substance priority list published by the Toxic Substances and Disease Registry Agency, As, Pb, and Hg are also indicated as being among the top three most hazardous substances. The initial soil was modified by biochar obtained from willow chips. The freeze-thaw effect on the total content of metals/metalloids (metal(-loid)s) in plant materials (roots and above-ground parts) and in phytostabilized soils (non- and biochar-amended) as well as on metal(-loid) concentration distribution/redistribution between four BCR (community bureau of reference) fractions extracted from phytostabilized soils was determined. Based on metal(-loid)s redistribution in phytostabilized soils, their stability was evaluated using the reduced partition index (Ir). Special attention was paid to investigating soil microbial composition. In both cases, before and after freezing-thawing, biochar increased plant biomass, soil pH value, and metal(-loid)s accumulation in roots, and decreased metal(-loid)s accumulation in stems and total content in the soil, respectively, as compared to the corresponding non-amended series (before and after freezing-thawing, respectively). In particular, in the phytostabilized biochar-amended series after freezing-thawing, the recorded total content of Zn, Cu, Pb, and As in roots substantially increased as well as the Hg, Cu, Cr, and Zn in the soil was significantly reduced as compared to the corresponding non-amended series after freezing-thawing. Moreover, exposure to freezing-thawing itself caused redistribution of examined metal(-loid)s from mobile and/or potentially mobile into the most stable fraction, but this transformation was favored by biochar presence, especially for Cu, Pb, Cr, and Hg. While freezing-thawing greatly affected soil microbiome composition, biochar reduced the freeze-thaw adverse effect on bacterial diversity and helped preserve bacterial groups important for efficient soil nutrient conversion. In biochar-amended soil exposed to freezing-thawing, psychrotolerant and trace element-resistant genera such as Rhodococcus sp. or Williamsia sp. were most abundant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...