Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 1): 132452, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34619257

RESUMO

The threat posed by the degradation of the soil environment by metal (-oid)s has been lead to the improvement of existing or search for new remediation methods; in this case, the application of environmentally friendly nanomaterials falls into this trend. The study applied a technique of aided phytostabilization for the immobilization of metal (-oid)s in soil with the application of nanosized halloysite and biochar (nBH), along with Lolium perenne L. Its effectiveness was assessed in terms of changing temperature conditions (16 cycles of freeze and thaw cycles, (FTC)) on the content of As, Cu, Pb and Zn in the soil, roots, and above-ground parts of the tested plant, chemical fraction distributions of metal (-oid)s and their stability (based on reduced partition index, Ir). The biomass yield in nBH-amended soil was 2-fold higher compared to control soil, but it decreased by 1.6-fold after FTC. nBH facilitated more bioaccumulation of As, Pb and Zn than Cu in plant roots, before than after FTC. nBH increased pH in phytostabilized soil, but it was not affected by changing FTC. In soil nBH-phytostabilized total concentration of metal (-oid)s significantly decreased compared to control soil, for As and Cu below permissible value, regardless of FTC. Soil amendment and changing temperature conditions affected metal (-oid)s redistribution in soil. As a result, the stability of As increased from 0.50 to 0.66, Cu from 0.49 to 0.52, Pb from 0.36 to 0.48 and Zn from 0.39 to 0.47. These findings suggest that nBH can immobilize metal (-oid)s in phytostabilized soil under changing temperature conditions.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Argila , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Temperatura
2.
Sci Rep ; 11(1): 15773, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349209

RESUMO

Removal of heavy metals (HMs) from soil is a priority in soil washing/soil flushing. However, for further management of remediated soil, it should be characterized in detail. This study presents, for the first time, an evaluation of soil quality after column flushing with new-generation washing agents (WAs) recovered from municipal sewage sludge (dissolved organic matter, DOM; soluble humic-like substances, HLS; soluble humic substances, SHS) and Na2EDTA as a standard benchmark. Sandy loam soil was spiked with industrial levels of Cu, Pb and Zn, then flushed in a column reactor at two WA flow rates (0.5 and 1.0 ml/min). Soil quality was assessed by determining both physico-chemical (pH, total HMs and their mobility, soil organic matter, OM, humic substances, HS and their fractions, macroelements) and biological indicators (dehydrogenase activity, DHA; germination rate, GR; and inhibition factors for roots and shoots of Triticum aestivum). Total residual HMs contents and HMs contents in the mobile fraction were significantly lower in soil flushed at 1.0 ml/min than in soil flushed at 0.5 ml/min. With all WAs, the decrease in Cu content was larger than that of the other HMs, however this HM most effectively was removed with DOM. In contrast, Pb most effectively was removed by HLS and Na2EDTA, and DOM should not be used to remediate Pb-contaminated soil, due to its very low effectiveness. Flow rate did not appear to affect the fertilizing properties of the soil, DHA activity or soil toxicity indicators. Soil flushing with all SS_WAs increased OM, HS, and exchangeable P, K and Na content in remediated soils, but decreased exchangeable Ca content, and in most cases, exchangeable Mg content. Soil flushing substantially improved DHA activity and GR, but only slightly improved the shoot and root inhibition factors.

3.
Sci Total Environ ; 796: 148756, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273836

RESUMO

Biochar has received extensive attention because of its multi-functionality for agricultural and environmental applications. Despite its many benefits, there are concerns related to the long-term safety and implications of its application, mainly because the mechanisms affecting soil and organism health are poorly quantified and understood. This work reviews 259 sources and summarises existing knowledge on biochar's adverse effects on soil from a multiangle perspective, including the physicochemical changes in soil, reduced efficiency of agrochemicals, potentially toxic substances in biochar, and effects on soil biota. Suggestions are made for mitigation measures. Mixed findings are often reported; however, the results suggest that high doses of biochar in clay soils are likely to decrease available water content, and surface application of biochar to sandy soils likely increases erosion and particulate matter emissions. Furthermore, biochar may increase the likelihood of excessive soil salinity and decreased soil fertility because of an increase in the pH of alkaline soils causing nutrient precipitation. Regarding the impact of biochar on (agro)chemicals and the role of biochar-borne toxic substances, these factors cannot be neglected because of their apparent undesirable effects on target and non-target organisms, respectively. Concerning non-target biota, adverse effects on reproduction, growth, and DNA integrity of earthworms have been reported along with effects on soil microbiome such as a shift in the fungi-to-bacteria ratio. Given the diversity of effects that biochar may induce in soil, guidelines for future biochar use should adopt a structured and holistic approach that considers all positive and negative effects of biochar.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Carvão Vegetal , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
4.
Materials (Basel) ; 14(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069264

RESUMO

In recent years, a lot of attention has been given to searching for new additives which will effectively facilitate the process of immobilizing contaminants in the soil. This work considers the role of the enhanced nano zero valent iron (nZVI) strategy in the phytostabilization of soil contaminated with potentially toxic elements (PTEs). The experiment was carried out on soil that was highly contaminated with PTEs derived from areas in which metal waste had been stored for many years. The plants used comprised a mixture of grasses-Lolium perenne L. and Festuca rubra L. To determine the effect of the nZVI on the content of PTEs in soil and plants, the samples were analyzed using flame atomic absorption spectrometry (FAAS). The addition of nZVI significantly increased average plant biomass (38%), the contents of Cu (above 2-fold), Ni (44%), Cd (29%), Pb (68%), Zn (44%), and Cr (above 2-fold) in the roots as well as the soil pH. The addition of nZVI, on the other hand, was most effective in reducing the Zn content of soil when compared to the control series. Based on the investigations conducted, the application of nZVI to soil highly contaminated with PTEs is potentially beneficial for the restoration of polluted lands.

5.
Sci Rep ; 11(1): 10067, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980879

RESUMO

This paper presents the first tests of Cu (7875 mg/kg), Pb (1414 mg/kg) and Zn (566 mg/kg) removal from contaminated soil with sewage-sludge-derived washing agents (SS_WAs) (dissolved organic matter, DOM; soluble humic-like substances, HLS; soluble humic substances, SHS) and Na2EDTA (as a standard benchmark) in column experiments. Flow rates of 0.5 ml/min and 1 ml/min were used. Using a 1. order kinetic model, the kinetic constant (k), the maximum concentrations of each metal removed (Cmax), and the initial rates of metal removal (r) were established. At both flow rates, stable flow velocity was maintained for approximately eight pore volumes, for flushing times of 8 h (1.0 ml/min) and 16 h (0.5 ml/min). Although the flow rate did not influence k, it influenced Cmax: at 1 ml/min, Cmax values were higher than at 0.5 ml/min. For Cu and Zn, but not Pb, k was about twofold higher with Na2EDTA than with SS_WAs. Although Na2EDTA gave the highest kCu, Cmax,Cu was highest with DOM (Na2EDTA, 66%; DOM 73%). For Pb removal, HLS was the most effective SS_WA (77%; Na2EDTA was 80% effective). kZn was about twofold higher with Na2EDTA than with SS_WAs. Cmax,Zn was highest with HLS. The quick mobilization of Cu, Pb and Zn with most of the WAs corresponded to efficient metal removal from the exchangeable (F1) fraction.

6.
Chemosphere ; 272: 129576, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33482516

RESUMO

The soil system is a key component of the environment that can serve as a sink of pollutants. Using processed waste for aided phytostabilization of metals (HMs) in contaminated soils is an attractive phytoremediation technique that integrates waste utilization and recycling. In this study, we evaluated the effect of biologically and thermally processed wastes, i.e. sewage sludge compost (CSS), poultry feather ash (AGF) and willow chip biochar (BWC), on phytostabilization of contaminated soil from a steel disposal dump. Greenhouse experiments with Lupinus luteus L. and amendments (dosage: 3.0%, w/w) were conducted for 58 days. Soil toxicity was evaluated with Ostracodtoxkit and Phytotoxkit tests. At the end of the experiment, soil pH, plant biomass yield, and HM accumulation in plant tissues were determined. HM distribution, HM stability (reduced partition index) and potential environmental risk (mRI index) in the soil were assessed. During phytostabilization, changes in the diversity of the rhizospheric bacterial community were monitored. All amendments significantly increased soil pH and biomass yield and decreased soil phytotoxicity. AGF and BWC increased accumulation of individual HMs by L. luteus roots better than CSS (Cu and Cr, and Ni and Zn, respectively). The soil amendments did not improve Pb accumulation by the roots. Improvements in HM stability depended on amendment type: Ni and Pb stability were improved by all amendments; Zn stability, by AGF, and BWC; Cd stability, by AGF; and Cr stability, by BWC. AGF reduced the mRI most effectively. Microbial diversity in amended soils increased with time of phytostabilization and was up to 9% higher in CSS amended soil than in control soil. AGF application favored the abundance of the genera Arenimonas, Brevundimonas, Gemmatimonas and Variovorax, whose metabolic potential could have contributed to the better plant growth and lower mRI in that soil. In conclusion, AGF and BWC have great potential for restoring steel disposal dump areas, and the strategies researched here can contribute to achieving targets for sustainable development.


Assuntos
Compostagem , Metais Pesados , Microbiota , Poluentes do Solo , Biodegradação Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Aço
7.
Sci Rep ; 10(1): 20586, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239705

RESUMO

Remediation of soils contaminated with metal must ensure high efficiency of metals removal, reduce bioavailability of residual metals and decrease ecological risk. Thus, for comprehensive environmental soil quality assessment, different indices must be used. In this study, suitability of 8 indices was used for soil highly contaminated with Cu (7874.5 mg kg-1), moderately with Pb (1414.3 mg kg-1) and low with Zn (566.1 mg kg-1), washed in batch and dynamic conditions with both conventional and next-generation washing agents. The following indices were used: modified contamination factor (mCf), modified contamination factor degree (mCdeg), mobility factor (MF), reduced partition index (IR), potential ecological risk factor (Er,Z), modified potential ecological risk factor (Er,m), potential ecological risk index (RIZ) and modified ecological risk index (RIm). For mCf, mCdeg and IR own classification scale was proposed. It was proven that most useful indices for assessment of soil pollution with metals were mCf and mCdeg. The mCf together with the IR allow to simultaneous assessment of soil pollution and stability for individual metals. These indices were appropriate for soil contaminated with different concentrations of metals, washed under both hydrodynamic conditions using various washing agents and different effectiveness of metals removal. Thus, they may be considered as most useful for evaluation of remediation method, feasibility of washing agent and assessing soil quality after washing.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32867145

RESUMO

Soil quality is seriously reduced due to chemical pollution, including heavy metal (HM) pollution. To meet quality standards, polluted soils must be remediated. Soil washing/soil flushing offers efficient removal of heavy metals and decreases environmental risk in polluted areas. These goals can be obtained by using proper washing agents to remove HMs from soil. These washing agents should not pose unacceptable threats to humans and ecosystems, including soil composition. Currently, it is desirable to use more environmentally and economically attractive washing agents instead of synthetic, environmentally problematic chemicals (e.g., ethylenediaminetetraacetic acid (EDTA)). The usefulness of novel washing agents for treatment of heavy metal-contaminated soils is being intensively developed, in terms of the efficiency of HM removal and properties of washed soils. Despite the unquestionable effectiveness of soil washing/flushing, it should be remembered that both methods generate secondary fluid waste (spent washing solution), and the final stage of the process should be treatment of the contaminated spent washing solution. This paper reviews information on soil contamination with heavy metals. This review examines the principles and status of soil washing and soil flushing. The novel contribution of this review is a presentation of the sources and characteristics of novel washing agents and chemical substitutes for EDTA, with their potential for heavy metal removal. Methods for treating spent washing solution are discussed separately.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Ecossistema , Poluição Ambiental/prevenção & controle , Humanos , Metais Pesados/análise , Solo , Poluentes do Solo/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-32825498

RESUMO

This study analysed the effect of three alkalizing soil amendments (limestone, dolomite chalcedonite) on aided phytostabilization with Festuca rubra L. depending on the hexavalent chromium (Cr(VI)) level in contaminated soil. Four different levels of Cr(VI) were added to the soil (0, 50, 100 and 150 mg/kg). The Cr contents in the plant roots and above-ground parts and the soil (total and extracted Cr by 0.01 M CaCl2) were determined with flame atomic absorption spectrometry. The phytotoxicity of the soil was also determined. Soil amended with chalcedonite significantly increased F. rubra biomass. Chalcedonite and limestone favored a considerable accumulation of Cr in the roots. The application of dolomite and limestone to soil contaminated with Cr(VI) contributed to a significant increase in pH values and was found to be the most effective in reducing total Cr and CaCl2-extracted Cr contents from the soil. F. rubra in combination with a chalcedonite amendment appears to be a promising solution for phytostabilization of Cr(VI)-contaminated areas. The use of this model can contribute to reducing human exposure to Cr(VI) and its associated health risks.


Assuntos
Biodegradação Ambiental , Cromo , Poluentes do Solo , Cromo/análise , Poluição Ambiental , Plantas , Solo , Poluentes do Solo/análise
10.
Ecotoxicol Environ Saf ; 188: 109934, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31740234

RESUMO

Due to the presence of toxic pollutants, soils in former military areas need remedial actions with environmentally friendly methods. Greenhouse experiments were conducted to investigate the aided phytostabilization of multi-heavy metals (HMs), i.e. Cd, Cr, Cu, Ni, Pb, Zn, in post-military soil by Festuca rubra and three mineral amendments (diatomite, dolomite and halloysite). The amendments were applied at 0 and 3.0% to each pot filled with 5 kg of polluted soil. After seven weeks of the phytostabilization, selected soil properties, biomass yield of F. rubra and immobilization of HMs by their accumulation in plant and redistribution among individual fractions in soil were determined. In addition, ecotoxicology parameters of non-amended and amended soil were established using Phytotoxkit (Sinapsis alba) and Ostracodtoxkit (Heterocypris incongruens) tests. The addition of halloysite significantly increased F. rubra biomass. Diatomite significantly increased both the Cd, Cu, Pb and Cr concentrations in the roots and the pH of the soil. The application of halloysite significantly decreased the Cd and Zn contents of the soil after the completion of the experiment. Dolomite and halloysite were more effective in HM immobilization in soil by decreasing their content in an exchangeable fraction than diatomite. These soil amendments significantly differentiated the length of S. alba roots and had a positive effect on the development of H. incongruens.


Assuntos
Carbonato de Cálcio/química , Argila/química , Recuperação e Remediação Ambiental/métodos , Festuca/crescimento & desenvolvimento , Magnésio/química , Metais Pesados/análise , Instalações Militares , Poluentes do Solo/análise , Biodegradação Ambiental , Biomassa , Festuca/química , Raízes de Plantas/crescimento & desenvolvimento , Solo/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-31627425

RESUMO

This study analyzed the impact of road transportation on the concentration of Zn, Ni, Pb, Co, and Cd in moss (Pleurozium schreberi). The study was carried out over five years near a national road running from the north to the east (Poland) in the area of Natura 2000 sites. Samples were collected at three significantly different locations: (1) near a sharp bend, (2) near a straight section of the road in a woodless area, and (3) in a slightly wooded area. At each location, moss samples were collected from sites situated 2, 4, 6, 8, 10, 12, and 14 m from the road edge. The highest Zn and Cd contents in the moss were recorded 6 m from the road edge near a sharp bend (where vehicles brake sharply and accelerate suddenly). At the same location, at a distance of 2 m, the highest Pb concentration was noted, and at a distance of 4 m from the road, the highest Ni concentration was noted. The Co concentration in the moss was the highest near the woodless straight section at a distance of 2 and 12 m from the road. The concentrations of Zn, Pb, Ni, Co (only at the woodless location), and Cd (at all locations) were significantly and negatively correlated with distance from the road.


Assuntos
Bryopsida/química , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Metais Pesados/química , Meios de Transporte , Metais Pesados/toxicidade , Polônia
12.
Sci Total Environ ; 688: 37-45, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31228768

RESUMO

Army bases and battle fields are areas of high pollution due to the chemicals released there. Soils in these areas suffer from these uses of the land, and ecosystem services are affected. Although, in the 20th century, the production of bombs and the locations of battle fields and army bases were widespread, there is little research on the impact of war on nature. Moreover, there is a need to rehabilitate the disturbed soils. The contents and ecological risks of Cu, Ni, Cd, Pb, Zn, and Cr in the topsoil from a post-military area (north-eastern Poland) were investigated. In addition, a vegetation experiment was performed with the technique of aided phytostabilization on soils from the study area. The novelty of this study is the assessment of the usefulness of soil amendments (chalcedonite, limestone, activated carbon) in heavy metal (HM) phytostabilization in contaminated soils from post-military areas. Soil samples were also examined for pollution quantification indicators, including the index of geoaccumulation (Igeo), contamination factor (CF), and degree of contamination, and subjected to the Ostracodtoxkit test. The mean contents of the tested HMs were higher than those stipulated in soil environmental quality standards. The highest Igeo (7.38) and CF (346) values were those of Cr and Zn, respectively. The highest increase in soil pH was observed after the application of limestone to the soil. The greatest reduction in Cu, Ni, and Cd contents was caused by addition of limestone. The contents of HMs in Festuca rubra were higher in its roots than in its above-ground parts.

13.
Artigo em Inglês | MEDLINE | ID: mdl-30596324

RESUMO

The aim of this study was to characterize sewage sludge from mechanical-biological wastewater treatment plants (WWTPs) in terms of total concentrations of heavy metals (HMs) and their distribution. Moreover, HM mobility, stability and ecological risk were assessed by calculating the mobility factor (MF), the reduced partition index (Ir) and the ecological risk index (ERI). Hierarchical cluster analysis (CA) was used to group the HMs in the sludges on the basis of their MF, Ir and ERI. The concentration of HMs decreased in the following order: Zn > Cu > Ni > Pb > Cd. HM mobility, as indicated by the MF values, was as follows: 18.7%-30.6% (Zn), 8.1%-36.4% (Ni), 6.8%-11.1% (Cu), 3.2%-32.2% (Pb) and 0% (Cd). Based on the average Ir values, the stability of the metals in the sludge increased in this order: Zn (0.23)=Pb (0.23)

Assuntos
Ecologia , Metais Pesados/análise , Esgotos/química , Modelos Teóricos , Medição de Risco
14.
J Hazard Mater ; 338: 160-166, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28570874

RESUMO

Batch washing experiments were performed to evaluate the feasibility of using a solution of humic substances (HS) extracted from municipal sewage sludge as a washing agent to remove As from soils at a former As mining area. Soils (S1, S2, S3) differed in organic matter content, pH and As concentration. At pH 4 and a HS concentration of 4000mgTOCL-1, As removal efficiency ranged from 18% (S2) to 27% (S3). In all cases, As removal proceeded according to pseudo-second-order kinetics (equilibrium As concentrations ranged from 625mgkg-1 (S3) to 1250mgkg-1 (S3); rate constants, from 1.02×10-5kgmg-1min-1 (S1) to 2.05×10-5kgmg-1min-1 (S3). The time needed to reach equilibrium was 12h. With double washing, the efficiency of As removal was 1.5-times higher (on average) than with single washing. Double washing increased As stability, as indicated by the reduced partition index, especially in soils S1 and S3. Moreover, HS effectively decreased the content of the most toxic As(III) (by 95-97%).

15.
Waste Manag ; 38: 312-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605301

RESUMO

The study examined how aeration rate (AR) in bioreactor (1.0 and 0.5l/min kg dm) at low C/N ratio (ca. 15-16) affected kinetics of organic matter (OM) removal, i.e. rate constant of OM removal (k) and maximum degradation of OM (A) and nitrogen evolution during sewage sludge composting. Moreover, potential ecological risk (Er) based on metal (Cd, Cr, Cu, Hg, Ni, Pb, Zn) content was evaluated. The process involved a two-stage system (bioreactor and windrow). In the bioreactor, at higher AR, k and A equaled 0.34 d(-1) and 101.9 g/kg dm, respectively; at lower AR k was 0.38 d(-1), however A 1.4-fold lower. Interestingly, in the windrow, k was much higher (0.086 d(-1)) for the biomass subjected to a lower AR, compared to 0.026 d(-1) at higher AR. Moreover, although at lower AR, k in the windrow was 4.4-fold lower than in the bioreactor, A was 1.15-fold higher. Total N content in mature compost was on the level 23.51-22.35 g/kg dm and metal concentration showed low ecological risk (Er < 16).


Assuntos
Carbono/análise , Nitrogênio/análise , Compostos Orgânicos/química , Reciclagem , Esgotos/química , Aerobiose , Monitoramento Ambiental , Cinética , Metais/análise , Medição de Risco
16.
Waste Manag Res ; 32(3): 221-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24616344

RESUMO

Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate.


Assuntos
Cinza de Carvão/química , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio , Filtração , Metais Pesados/química , Nitrogênio/análise , Fósforo/análise , Fósforo/química , Polônia , Esgotos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...